Investigating Factor Analysis Features for Deep Neural Networks
In Noisy Speech Recognition

Sriram Ganapathy, Samuel Thomas, Dimitrios Dimitriadis, Steven Rennie

IBM T.J. Watson Research Center, Yorktown Heights, NY, USA.
{ganapath,sthomas,dbdimitr,srennie}@us.ibm.com

Abstract

The problem of speaker and channel adaptation in deep neural network (DNN) based automatic speech recognition (ASR) systems is of substantial interest in advancing the performance of these systems. Recently, the speaker identity vectors (i-vectors) have shown improvements for ASR systems in matched conditions. In this paper, we propose the application of the general factor analysis framework for noisy speech recognition tasks. Several methods for deriving speaker and channel factors are explored including joint factor analysis (JFA) and i-vectors derived from DNN posteriors instead of the traditional Universal background model (UBM) approach. We also experiment with the late fusion of i-vector features with bottleneck (BN) features obtained from a previously trained convolutional neural network (CNN) system. The ASR experiments are performed on the Aspire challenge test data which contains noisy far-field speech while the acoustic models are trained with conversational telephone speech (CTS) data from the Fisher corpus. In these experiments, we show that the factor analysis based methods provide significant improvements in the word error rate (relative improvements of about 11% compared to the baseline DNN system trained with speaker adapted features).

Index Terms: Factor analysis, Speaker and Channel Adaptation, Deep Neural Networks, Automatic Speech Recognition

1. Introduction

Deep neural networks (DNNs) have shown promising performance for tasks like automatic speech recognition (ASR) [1, 2] and in the recent years have increasingly become the de-facto method for acoustic modeling replacing the Gaussian mixture models (GMMs). In the context of GMM based ASR systems, the problem of speaker adaptation has been widely studied and transformation techniques like maximum likelihood linear regression (MLLR) have been successfully applied. However, for discriminative models like DNNs, speaker and channel adaptation from a small amount of data is not straightforward. While adaptation of a subset of parameters have been tried in the past [3], these methods require some form of regularization to avoid issues of overfitting [4].

For speaker and language recognition, the concept of identity vectors (i-vectors) is widely used for summarizing the statistics from a single recording with a fixed dimensional vector [5, 6]. Recently, the i-vectors have been explored for ASR tasks by concatenating the i-vectors along with acoustic features for training DNN models [7, 8, 9]. This approach attempts to learn the weights of the DNN in a manner which reduces the speaker variability in phoneme classification by exploiting the speaker characteristics embedded in the i-vectors. In other words, the speaker i-vector features represent the nuisance directions for the phoneme classification task and the network is trained to ignore these variabilities. In another related work [10], the authors argue that i-vector features may encompass much more than speaker specific information.

In this paper, we propose to use the i-vector approach for ASR to address channel and noise related variabilities in the speech signal in addition to the speaker variability. Joint factor analysis (JFA) [11] provides a decomposition scheme which separates the projection model into separate speaker and channel/session sub-spaces. Using this procedure, we derive speaker and channel factors which can be used with acoustic features for DNN training. To our knowledge, this is the first work using JFA framework with DNN based posteriors instead of the GMM-UBM approach [12, 13]. In this case, the mixture components correspond to phonetic classes and the GMM based posteriors used in the conventional i-vector estimation are replaced with phonetic posteriors.

The other scenario of interest here is the use of the i-vectors along with a previously trained DNN/CNN acoustic model. The goal here is to improve ASR performance with minimal retraining. We develop a scheme of using hidden layer activation outputs (BN features) from the trained DNN model with the i-vectors to train a shallow neural network.

The ASR experiments are performed on the Aspire challenge data [14] which consists of a scenario of mis-matched acoustic training and testing conditions. The acoustic models are trained on 600 hours of conversational telephone speech (CTS) from the Fisher corpus. The test data is collected in far-field microphone conditions and it includes significant room noise and reverberation. Our experiments in this task show that factor analysis features provide significant improvements in the WER compared to baseline speaker adapted acoustic features.

The rest of the paper is organized as follows. Sec. 2 describes the general factor analysis framework and highlights the different schemes used in this paper. The experimental setup and the training procedure are discussed in Sec. 3. The results for various ASR evaluations are reported in Sec. 4 followed by a brief discussion. Sec. 5 provides a summary of the techniques proposed in this work.

2. Factor Analysis Framework

The techniques outlined here are derived from the previous work on joint factor analysis (JFA) and i-vectors [5, 11, 15]. We follow the notations used in [5]. The training data from all the speakers is used to train a GMM with model parameters \(\lambda = \{ \pi_c, \mu_c, \Sigma_c \} \) where \(\pi_c \), \(\mu_c \) and \(\Sigma_c \) denote the mixture component weights, mean vectors and covariance matrices respectively for \(c = 1, ..., C \) mixture components. Here, \(\mu_c \) is a vector of dimension \(F \) and \(\Sigma_c \) is of assumed to be diagonal matrix of dimension \(F \times F \).
2.1. I-vector Representations

Let \mathcal{M}_0 denote the UBM supervector which is the concatenation of μ_c for $c = 1, \ldots, C$ and is of dimension of $CF \times 1$. Let Σ denote the block diagonal matrix of size $CF \times CF$ whose diagonal blocks are Σ_c. Let $\mathcal{X}(s) = \{x_i^s, i = 1, \ldots, H(s)\}$ denote the low-level feature sequence for input recording s where i denotes the frame index. Here $H(s)$ denotes the number of frames in the recording. Each x_i^s is of dimension $F \times 1$.

Let $\mathcal{M}(s)$ denote the recording supervector which is the concatenation of speaker adapted GMM means $\mu_c(x_i^s)$ for $c = 1, \ldots, C$ for the speaker s. Then, the i-vector model is,

$$\mathcal{M}(s) = \mathcal{M}_0 + V y(s)$$

where V denotes the total variability matrix of dimension $CF \times M$ and $y(s)$ denotes the i-vector of dimension M. The i-vector is assumed to be distributed as $N(0, I)$.

In order to estimate the i-vectors, the iterative EM algorithm is used. We begin with random initialization for the total variability matrix V. Let $p_s(c|x_i^s)$ denote the alignment probability of assigning the feature vector x_i^s to mixture component c. The sufficient statistics are then computed as,

$$N_c(s) = \sum_{i=1}^{H(s)} p_s(c|x_i^s)$$

$$S_{X,c}(s) = \sum_{i=1}^{H(s)} p_s(c|x_i^s) (x_i^s - \mu_c)$$

Let $N(s)$ denote the $CF \times CF$ block diagonal matrix with diagonal blocks $N_1(s) I, N_2(s) I, \ldots, N_C(s) I$ where I is the $F \times F$ identity matrix. Let $S_X(s)$ denote the $CF \times 1$ vector obtained by splicing $S_{X,1}(s) \ldots S_{X,C}(s)$.

It can be easily shown [5] that the posterior distribution of the i-vector $p_s(y(s)|\mathcal{X}(s))$ is Gaussian with covariance $I^{-1}(s)$ and mean $I^{-1}(s) V^* \Sigma^{-1} S_X(s)$, where $I(s) = I + V^* \Sigma^{-1} N(s) V$

The optimal estimate for the i-vector $y(s)$ obtained as $\arg\max_y p_s(y(s)|\mathcal{X}(s))$ is given by the mean of the posterior distribution.

For re-estimating the V matrix, the maximization of the expected value of the log-likelihood function (EM algorithm), gives the following relation [5],

$$\sum_{s=1}^{S} N(s) V E[y(s) y^*(s)] = \sum_{s=1}^{S} S_X(s) E[y^*(s)]$$

where $E[\cdot]$ denotes the posterior expectation operator. The solution for Eq. (4) can be computed for each row of V. Thus, the i-vector estimation is performed by iterating between the estimation of posterior distribution and the update of the total variability matrix (Eq. (4)).

2.2. Joint Factor Analysis

The JFA approach attempts to capture the additional channel factors that represent intraspeaker variability [11]. These factors represent the variability in the recording environment for different segments from the same speaker. For this case, we assume that for speaker s, there are $q = 1, \ldots, Q(s)$ sessions, each with $H_q(s)$ frames. The JFA model is

$$\mathcal{M}(s) = \mathcal{M}_0 + V y(s) + D z(s),$$

$$\mathcal{M}_q(s) = \mathcal{M}(s) + U x_q(s),$$

where V denotes the speaker variability matrix of size $CF \times M$, U denotes the channel/session variability matrix of size $CF \times N$ and D is a diagonal matrix of size $CF \times CF$ capturing the residual space. Here, $\mathcal{M}(s)$ and $\mathcal{M}_q(s)$ represent supervectors for the entire data from speaker s and for the session q from speaker s respectively. The factors $y(s), x_q(s)$ and $z(s)$ are speaker factors, channel factors and residual factors of dimension M, N and CF respectively. The sub-space VV^* captures the interspeaker variability while the sub-space UU^* captures the intraspeaker channel variability.

In order to estimate the parameters in the JFA model, let $Y(s)$ denote the collection of factors for each speaker s, $Y(s) = [x_1^s(s), \ldots, x_q^s(s), y^*(s), z^*(s)]^*$. Also, let

$$V = \begin{bmatrix} U & V & D \\ \vdots & \ddots & \vdots \\ U & V & D \end{bmatrix}$$

where V is of dimension $[Q(s)CF \times (Q(s)N + M + CF)]$. If we also have $\mathcal{M}_q(s)$ as the concatenation of all $\mathcal{M}_q(s)$ for $q = 1, \ldots, Q(s)$ and \mathcal{M}_0 as the concatenation of the same vector $\mathcal{M}_0 Q(s)$ times, then we can rewrite Eq. (5) as

$$\mathcal{M}(s) = \mathcal{M}_0 + V Y(s)$$

which is similar to Eq. (1). Thus, the parameters of the JFA model can be computed in a very similar fashion to the EM formulation described in Sec. 2.1. In the ASR experiments, we group together speech segments from a speaker so as to form at least 5 sessions per speaker. In our experiments, we use $M = 150$ and $N = 150$. For each speech utterance, these features (one feature per speaker) are replicated to match the frame length of the acoustic features for the utterance and appended at the input of the DNN/CNN acoustic model.

2.3. DNN i-vectors

Instead of using a GMM-UBM based computation of i-vectors, we can also use DNN context dependent state (senone) posteriors to generate the sufficient statistics used in the i-vector computation [12, 13]. The GMM mixture components will be replaced with the senone classes present at the output of the DNN. Specifically, $p_s(c|x_i^s)$ used in Eq. (2) is replaced with the DNN posterior probability estimate of the senone c given the input acoustic feature vector x_i^s and the number of senones is the parameter C. The other parameters of the UBM model $\lambda = \{\pi_c, \mu_c, \Sigma_c\}$ are computed as

$$\pi_c = \frac{\sum_{s=1}^{S} \sum_{i=1}^{H(s)} p(c|x_i^s)}{\sum_{c=1}^{C} \sum_{s=1}^{S} \sum_{i=1}^{H(s)} p(c|x_i^s)}$$

$$\mu_c = \frac{\sum_{s=1}^{S} \sum_{i=1}^{H(s)} p(c|x_i^s) x_i^s}{\sum_{c=1}^{C} \sum_{s=1}^{S} \sum_{i=1}^{H(s)} p(c|x_i^s)}$$

$$\Sigma_c = \frac{\sum_{s=1}^{S} \sum_{i=1}^{H(s)} p(c|x_i^s) (x_i^s - \mu_c)(x_i^s - \mu_c)^*}{\sum_{c=1}^{C} \sum_{s=1}^{S} \sum_{i=1}^{H(s)} p(c|x_i^s)}$$

Using these estimates for the UBM parameters, the rest of the i-vector formulation discussed in Sec. 2.1 is followed to derive the DNN i-vectors. For the DNN i-vectors, we use a reduced set of senones (1088 obtained by merging the 10000 triphone states using a decision tree).
3. Experimental setup

3.1. ASR System

The ASR system is similar to the setup described in [16]. The first step in the acoustic modeling involved the training of traditional HMM-GMM based acoustic models. The GMM models are trained on 13 dimensional PLP features estimated in 25 ms windows of speech. The cepstral features from 9 consecutive frames are then spliced after speaker based cepstral mean-variance and vocal tract length normalizations (VTLN). A LDA transform is applied to reduce the final feature dimensionality to 40. The ML training of the GMM models is also interleaved with the estimation of a global semi-tied covariance (STC) transform. Speaker-space feature maximum likelihood regression (FMLLR) is finally applied to train speaker adapted models. The training is done with 900 hours of speech from the Fisher corpus [17]. The Aspire test data [14] contains 30 recordings each of duration 10 minutes long amounting to 5 hours of test data.

3.1.1. Deep Neural Network Models

The DNN models are fully connected multilayer perceptrons with several non-linear hidden layers that are discriminatively trained to estimate posterior probabilities of context-dependent states. Using the standard error back-propagation and cross-entropy objective function, the DNNs are trained on speaker adapted FMLLR features using alignments produced from the HMM-GMM acoustic model described earlier. The DNNs are pretrained by growing them layer-wise to 7 hidden layers. Except for the penultimate bottleneck (BN) layer with 512 units all the other hidden layers have 2048 units. In all the experiments reported in this paper, the DNNs are trained on 600 hours of audio data from the Fisher corpus.

3.1.2. Convolutional Neural Network Models

Convolutional neural networks (CNN) [18] use additional feature extracting layers based on $2 \times D$ convolution before a DNN. We train CNN models on 40 dimensional log-mel spectra augmented with Δ and $\Delta\Delta$s. Each frame of speech is also appended temporally with a fixed set of 11 frames. All of the 128 nodes in the first feature extracting layer are attached with 9×9 filters while the second feature extracting layer with 256 nodes has a similar set of 4×3 filters. The non-linear outputs from the second feature extracting layer are then passed onto the following DNN layers.

3.1.3. Language models

The ASR system uses a 4-gram model containing 18M n-grams derived from the entire Fisher training corpus.

3.1.4. Late-fusion Acoustic Models

These networks are much shallower networks with 4 hidden layers with 1024 units each. The input to these networks are 512 dimensional BN features from DNN/CNN models, concatenated with i-vector features.

3.2. Denoising

The training and testing sets of the Aspire task [14] are highly mismatched. While the training data is derived from conversational telephone speech (CTS), the test data is recorded in noisy conditions using a far-field microphone. Thus, the test data contains significant amounts of noise and reverberation artifacts. In order to decrease the effects of these two types of distortions, we first suppress the additive noise using a variation of the MMSE algorithm [19]. Then, we subtract the late reverberation component of the signal employing the MSLP (“long-term Multi-Step Linear Prediction”) algorithm [20]. The denoising process is applied only on the test set, while the audio of the training set is left unprocessed.

4. Results

4.1. Baseline System

We explore the usefulness of speaker specific (VTLN-LDA-FMLLR) transforms for the Aspire data as well as the benefits of denoising the test data. These results are reported in Table 1. In these experiments the DNN input layer is of dimension 360 (9 frame of 40 dimensional features). As shown here, the application of speaker transforms provides significant improvements over the log Mel features. The denoising procedure described in Sec. 3 gives further improvements of about 9 % relative compared to the speaker specific features. The last row of this table (FMLLR-v2) corresponds to scenario of retraining the FMLLR transform using the lattice generated from the first pass speaker specific FMLLR features with denoising. This system will be used as the baseline for investigating the usefulness of factor analysis features.

4.2. I-vector variants

The next set of experiments compare the different variants of GMM-UBM based i-vectors (Sec. 2.1). These results reported in Table 2 compare the performance of i-vectors obtained from different number of Gaussian mixture components (namely 1024,2048 and 4096) which were trained using 39 dimensional PLP cepstral coefficients with delta and acceleration coefficients. The i-vectors for all these experiments are of $M = 150$ dimensions, which would make the DNN input layer of 510 dimensions. As seen here, the i-vector features improve the baseline ASR performance for all the cases considered here. The results suggest that increasing the number of Gaussians has a relatively minor effect on performance of

<table>
<thead>
<tr>
<th>System</th>
<th>WER (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logmel feat.</td>
<td>51.2</td>
</tr>
<tr>
<td>vtln+s+fmllr</td>
<td>47.6</td>
</tr>
<tr>
<td>vtln+s+fmllr + Denoising</td>
<td>43.7</td>
</tr>
<tr>
<td>vtln+s+fmllr-v2 + Denoising (baseline)</td>
<td>43.2</td>
</tr>
</tbody>
</table>

Table 1: Performance in terms of word error rate (WER %) for the baseline ASR system trained with 600 hours of CTS data and tested on the Aspire challenge data. The fmllr – v2 stands for two pass fmllr using transcripts from first pass fmllr.

<table>
<thead>
<tr>
<th>System</th>
<th>WER (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>43.2</td>
</tr>
<tr>
<td>+ ivec-plpfmllr-unorm</td>
<td>41.0</td>
</tr>
<tr>
<td>+ ivec-plp2048</td>
<td>41.3</td>
</tr>
<tr>
<td>+ ivec-plp4096</td>
<td>40.8</td>
</tr>
<tr>
<td>+ ivec-plp1024-cmvn</td>
<td>40.1</td>
</tr>
<tr>
<td>+ ivec-plp1024-vtln-lda-fmllr</td>
<td>39.5</td>
</tr>
<tr>
<td>+ ivec-unorm-plp1024-vtln-lda-fmllr</td>
<td>38.9</td>
</tr>
</tbody>
</table>

Table 2: Performance in terms of word error rate (WER %) for different variants of plp based i-vectors.
The use of DNN based JFA features improves the ASR performance compared to GMM-UBM based i-vectors. The use of i-vectors in late fusion scenario enables the application in CNN based ASR systems and it improves the performance of a previously trained ASR system with minimal retraining effort. The next logical step in this pipeline is to combine all individual approaches - training DNN i-vectors on speaker transformed diverse acoustic frontend. Furthermore, there is a need for more scientific and experimentation analysis to explore the information conveyed by i-vectors for DNN acoustic models.

5. Summary

In this paper, we have analyzed the use of factor analysis features for ASR tasks in noisy speech. The various factor analysis schemes explored in this work include - conventional i-vectors, joint factor analysis and DNN based i-vectors. Several ASR experiments using these features indicate that the factor analysis features improves the performance of ASR systems by a considerable margin.

6. Acknowledgements

The authors would like to thank Brian Kingsbury, Hong-Kwang Kuo and Lidia Mangu for their help in building the ASR system and Jason Pelecanos for his help with the i-vector setup.
7. References

