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Abstract
We present the recent advances along with an error analysis of
the IBM speaker recognition system for conversational speech.
Some of the key advancements that contribute to our system
include: a nearest-neighbor discriminant analysis (NDA) ap-
proach (as opposed to LDA) for intersession variability com-
pensation in the i-vector space, the application of speaker and
channel-adapted features derived from an automatic speech
recognition (ASR) system for speaker recognition, and the use
of a DNN acoustic model with a very large number of output
units (∼10k senones) to compute the frame-level soft align-
ments required in the i-vector estimation process. We evaluate
these techniques on the NIST 2010 SRE extended core condi-
tions (C1–C9), as well as the 10sec–10sec condition. To our
knowledge, results achieved by our system represent the best
performances published to date on these conditions. For exam-
ple, on the extended tel-tel condition (C5) the system achieves
an EER of 0.59%. To garner further understanding of the re-
maining errors (on C5), we examine the recordings associated
with the low scoring target trials, where various issues are iden-
tified for the problematic recordings/trials. Interestingly, it is
observed that correcting the pathological recordings not only
improves the scores for the target trials but also for the non-
target trials.
Index Terms: deep neural networks, discriminant analysis, fM-
LLR, i-vector, nearest neighbor, speaker recognition

1. Introduction
In recent years, the research trend in the speaker recognition
field has evolved from joint factor analysis (JFA) based meth-
ods, which attempt to model the speaker and channel subspaces
separately [1], towards the i-vector approach that models both
speaker and channel variabilities in a single low-dimensional
(e.g., a few hundred) space termed the total variability subspace
[2]. State-of-the-art i-vector based speaker recognition systems
employ universal background models (UBM), which are based
on either unsupervised GMMs [3] or supervised ASR acous-
tic models (e.g., GMM-HMM or DNN) [4, 5, 6], to generate
frame-level soft alignments required in the i-vector estimation
process. DNN Bottleneck and Tandem features have also been
explored for speaker recognition [7, 8] , and more recently suc-
cessfully used in some state-of-the-art systems [9, 10]. The i-
vectors are typically post-processed through a linear discrimi-
nant analysis (LDA) [11] stage to generate dimensionality re-
duced and channel-compensated features which can then be ef-
ficiently modeled and scored with various backends such as a
probabilistic LDA (PLDA) [12, 13].

In this paper, we report on the latest advancements made
in the IBM i-vector speaker recognition system [14] for con-
versational speech. Particularly, we describe the key compo-

nents that contribute significantly to our system performance.
These components include: 1) a nearest-neighbor based dis-
criminant analysis (NDA) approach [15] for channel compensa-
tion in i-vector space, which, unlike the commonly used Fisher
LDA, is non-parametric and typically of full rank, 2) speaker-
and channel-adapted features derived from feature-space maxi-
mum likelihood linear regression (fMLLR) transforms [16, 17],
which are used both to train/evaluate the DNN and to compute
the sufficient Baum-Welch statistics for i-vector extraction, and
3) a DNN acoustic model with a large number of output units
(∼ 10k senones) to compute the soft alignments (i.e., the pos-
teriors). To quantify the contribution of these components, we
evaluate our system in the context of speaker verification ex-
periments using speech material from the NIST 2010 speaker
recognition evaluation (SRE) which includes 9 extended core
tasks as well as a 10sec–10sec condition. Motivated by the rel-
atively low speaker recognition error rates achieved by our sys-
tem (e.g., 0.59% EER on C5 in SRE 2010), we also conduct
an error analysis of low scoring target trials to gain insights re-
garding the nature of the issues associated with the remaining
system errors on C5.

2. System Overview
In the following subsections, we briefly describe the major com-
ponents of our speaker recognition system. A schematic block
diagram of the system is depicted in Fig. 1.

2.1. DNN i-vector extraction
The i-vector representation is based on the total variability
modeling concept which assumes that speaker- and channel-
dependent variabilities reside in the same low-dimensional sub-
space [2]. In order to learn the bases for the total variability
subspace, one needs to first compute the Baum-Welch statistics
which are defined as,

Ng(s) =
∑
t

γtg(s), (1)

Fg(s) =
∑
t

γtg(s)Ot(s), (2)

whereNg(s) and Fg(s) denote the zeroth- and first-order statis-
tics for speech session s, respectively, with γtg(s) being the
posterior probability of the mixture component g given the ob-
servation vector Ot(s) at time frame t.

The observation vector Ot(s) can be either the conven-
tional raw acoustic features such as MFCCs or their speaker-
and channel-adapted versions which is computed through a per
recording fMLLR transform [17, 16] typically obtained with a
GMM-HMM system. Note from Fig. 1 that the same fMLLR
transformed features can be used to train/evaluate the DNN
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Figure 1: Block diagram of the IBM speaker recognition system with fMLLR speaker- and channel-adapted features, DNN posterior
based i-vectors, and NDA dimensionality reduction.

as well as compute the sufficient Baum-Welch statistics for i-
vector extraction.

Traditionally, the frame-level soft alignments, γtg(s), in (1)
and (2) are computed with a GMM acoustic model trained in
an unsupervised fashion (i.e., with no phonetic labels). How-
ever, in [4], a supervised GMM-HMM acoustic model (derived
from a speech recognition system) was utilized to estimate the
GMM-UBM hyperparameters for speaker recognition, assum-
ing that class-conditional distributions for the various phonetic
classes are Gaussian. More recently, inspired by the success of
DNN acoustic models in automatic speech recognition (ASR)
field, [5] proposed the use of DNN senone (context-dependent
triphones) posteriors for computing the soft alignments, γtg(s),
which resulted in remarkable reductions in speaker recognition
error rates. Motivated by these results, in this paper, we explore
DNN i-vectors extracted with a very large number of senones
for speaker recognition, and compare their effectiveness against
GMM i-vectors on this task.

2.2. Nearest-neighbor discriminant analysis (NDA)
As noted previously, state-of-the-art speaker recognition sys-
tems employ LDA for intersession variability compensation in
the i-vector space. However, there are some limitations asso-
ciated with the parametric LDA where the underlying distribu-
tion of classes is assumed to be Gaussian and unimodal. Never-
theless, it is well known in the speaker recognition community
that the actual distribution of i-vectors may not necessarily be
Gaussian [18], particularly in the presence of noise and channel
distortions [15, 19]. In addition, for the NIST SRE scenarios,
speech recordings come from various sources (sometimes out-
of-domain), therefore unimodality of the distributions cannot be
guaranteed.

In order to alleviate some of the limitations identified
for LDA, a nonparametric nearest-neighbor based discriminant
analysis techniques was proposed in [20], and recently evalu-
ated for both speaker and language recognition tasks on high-
frequency (HF) radio channel degraded data [15, 19], where it
compared favorably to LDA. In NDA, the expected values that
represent the global information about each class are replaced
with local sample averages computed based on the k-NN of in-
dividual samples. More specifically, in the NDA approach, the
between-class scatter matrix is defined as,

S̃b =

C∑
i=1

C∑
j=1
j 6=i

Ni∑
l=1

wij
l

(
xi
l −Mij

l

)(
xi
l −Mij

l

)T
, (3)

where xi
l denotes the lth sample from class i, andMij

l is the lo-
cal mean of k-NN samples for xi

l from class j. Here, C and Ni

denote the number of classes and the number of samples in class
i, respectively. The weighting function wij

l is introduced in (3)
to deemphasize the local gradients that are large in magnitude
to mitigate their influence on the scatter matrix. The weight pa-

rameter,wij
l , is larger for samples near the classification bound-

ary, while it drops off to approximately 0 for samples that are
far from the boundary. In this study, the within-class scatter ma-
trix, Sw, is computed similarly as in LDA. The NDA transform
is then formed by calculating the eigenvectors of S−1

w S̃b.
Three important observations can be made from a careful

examination of the nonparametric between-class scatter matrix
in (3). First, notice that the mean vector, Mij

l , is calculated
locally (as opposed to globally in LDA), thereby resulting in
more robust transforms with the NDA, particularly for scenarios
where unimodality of the class conditional distributions cannot
be guaranteed. Second, because all the samples are taken into
account for the calculation of the nonparametric between-class
scatter matrix (as opposed to only the class centroids in LDA),
S̃b, and hence the NDA projection, is generally of full rank.
Finally, compared to LDA, NDA is more effective in preserving
the complex structure (i.e., local and boundary structure) within
and across different classes because LDA only uses the global
gradient obtained with the centroids of the classes to measure
the between-class scatter. On the other hand, NDA uses the
local gradients that are emphasized along the boundary through
the weighting function, wij

l .

3. Experiments
This section provides a description of our experimental setup
including speech data, the ASR system configuration, and the
speaker recognition (SR) system configuration.

3.1. Data
We conduct the core of our speaker recognition experiments
using conversational telephone and microphone (phone call
and interview) speech material extracted from datasets released
through the LDC for the NIST 2004-2010 SRE [21, 22], as well
as Switchboard Cellular (SWBCELL) Parts I and II and Switch-
board2 (SWB2) Phase II and Phase III corpora. These datasets
contain speech spoken in U.S. English (the non English por-
tion was filtered out) from a large number of male and female
speakers with multiple sessions per speaker. The NIST SRE
2010 data is held out for evaluations, while the remaining data
are used to train the system hyper-parameters (i.e., the i-vector
extractor, LDA/NDA, and PLDA). In our experiments, we con-
sider all 9 extended core tasks (C1–C9) along with the 10sec–
10sec condition (C10s) in the NIST SRE 2010 that involve tele-
phone and microphone trials from both male and female speak-
ers (consult [23] for a more detailed description of the tasks).

3.2. DNN system configuration
A DNN model, with 7 fully connected hidden layers with
2048 units per layer except for the bottleneck layer that has
512 units, is discriminatively trained using the standard error



back-propagation and cross-entropy objective function to esti-
mate posterior probabilities of 10,000 senones (HMM triphone
states). The training is accomplished using the IBM Attila
toolkit [24] on 600 hours of conversational telephone speech
(CTS) data from the Fisher corpus [25] with a 9-frame con-
text of 40-dimensional speaker-adapted feature vectors obtained
through per recording fMLLR transforms [16, 17]. The fM-
LLR transforms are generated for each recording with decod-
ing alignments obtained from a GMM-HMM acoustic model
(see [26, 27] for more details).

3.3. SR system configuration
For speech parameterization (other than the fMLLR based fea-
tures), we extract 13-dimensional MFCCs (including c0) from
25 ms frames every 10 ms using a 24-channel mel filterbank.
The first and second temporal cepstral derivatives are also com-
puted over a 5-frame window and appended to the static fea-
tures to capture the dynamic pattern of speech over time. This
results in 39-dimensional feature vectors. For non-speech frame
dropping, we employ an unsupervised speech activity detector
(SAD) based on voicing energy features [28]. After dropping
non-speech, short-time cepstral mean subtraction (CMS) is ap-
plied.

In this paper, a 500-dimensional total variability subspace
is learned and used to extract i-vectors from the recordings.
To learn the i-vector extractor, out of a total of 60,178 record-
ings available from 1884 male and 2601 female speakers, we
select 48,325 recordings from NIST SRE 2004-2008, SWB-
CELL, and SWB2 corpora. The zeroth and first order Baum-
Welch statistics are computed for each recording using soft
alignments obtained from either a gender-independent 2048-
component GMM-UBM with diagonal covariance matrices, or
the DNN acoustic model with 2k, 4k, and 10k senones. The
GMM-UBM is trained using 21,207 recordings selected from
the NIST SRE 2004-2006, SWBCELL, and SWB2 corpora.

After extracting 500-dimensional i-vectors, we either use
LDA or NDA for inter-session variability compensation by re-
ducing the dimensionality to 250. In order to train the NDA, we
employ a one-versus-rest strategy to compute the inter-speaker
scatter matrix in (3). This provides flexibility on the number of
nearest neighbors used for computing the local means. A co-
sine similarity metric (as opposed to Euclidean) is used to find
the k-nearest neighbors for each sample. The dimensionality
reduced i-vectors are then centered, whitened, and unit-length
normalized. For scoring, a Gaussian PLDA model with a full
covariance residual noise term [12, 13] is learned using the i-
vectors extracted from all 60,178 speech segments (1884 male
and 2601 female speakers) as noted previously. The Eigenvoice
subspace in the PLDA model is assumed full-rank.

4. Results and Discussion
4.1. Experimental results
In this section, we summarize the results obtained with the ex-
perimental setup presented in Section 3. In the first experi-
ment, we evaluated the effectiveness of NDA versus LDA for
inter-session variability compensation in the i-vector space. The
outcome of this experiment on C5 is presented in Table 1, in
terms of the equal error rate (EER), minimum detection cost
function with the NIST SRE 2008 [29] and 2010 [23] defini-
tions (minDCF08 and minDCF10). It can be seen from the
table that the systems with NDA consistently provide better
speaker recognition performance across all three metrics. For

Table 1: Performance comparison of IBM speaker recognition
systems with various configurations on C5, with 10k senones.

System EER [%] minDCF08 minDCF10

GMM-MFCC-LDA 2.11 0.113 0.440
GMM-MFCC-NDA 1.49 0.071 0.280
DNN-MFCC-LDA 0.91 0.045 0.172
DNN-MFCC-NDA 0.68 0.034 0.140
DNN-fMLLR-LDA 0.75 0.032 0.125
DNN-fMLLR-NDA 0.59 0.025 0.095

the GMM based system, a relative improvement of 30% in EER
is achieved with NDA over LDA, while for the DNN based sys-
tems with MFCCs and fMLLR features relative improvements
of 25% and 21% are obtained, respectively. As we discussed be-
fore, this is due to the nonparametric nature of the scatter matri-
ces in NDA that makes no assumptions regarding the underlying
class-conditional distributions (i.e., Gaussianity and unimodal-
ity). Another important observation that can be made from Ta-
ble 1 is that, irrespective of the dimensionality reduction algo-
rithm used, the systems with fMLLR features outperform the
MFCC based systems. This is attributed to the ability of the
fMLLR transforms in reducing the speaker and channel vari-
abilities in the acoustic feature space. Finally, consistent with
the results reported in recent studies [5, 6], the DNN based sys-
tems outperform the GMM based systems by significant margin
(e.g., resulting in a relative improvement of more than 54% in
terms of the EER with MFCCs and NDA). In [14], we also in-
vestigated the impact of the senone set size (2k, 4k, and 10k) on
speaker recognition performance, where we observed that the
larger the number of senones, the better the performance. It is
worth noting that increasing the number of components in the
unsupervised GMM acoustic model (with diagonal covariance
matrices) for speaker recognition did not seem to result in much
performance gains in the recent studies [5, 6].

In the next set of experiments, we investigated the impact
of in-domain and out-of-domain training for LDA versus NDA.
This was accomplished by first splitting the training data into
in- and out-of-domain parts, and then retraining the LDA and
NDA models on these parts. Similar to the setup used in the
domain adaptation challenge (e.g., see [9, 30]), the in-domain
part contains CTS data that come from the Mixer collection,
i.e., SRE2004–2008 corpora, while the out-of-domain part con-
tains data from the older SWB2 and SWBCELL corpora. Ta-
ble 2 shows the results from these experiments on C5 which are
obtained with i-vectors computed using 10k DNN senones and
fMLLR features. It is observed that while NDA outperforms
LDA with out-of-domain training, it offers minimal improve-
ment (at least in terms of EER) when only in-domain train-
ing data is used. However, with pooled in-domain and out-of-
domain data (which is no longer unimodal), a significant im-
provement in performance is obtained with NDA over LDA

Table 2: Comparison of LDA vs NDA for in-domain and out-of-
domain training on C5, with fMLLR features and 10k senones.

System Domain EER [%] minDCF08 minDCF10
out 1.80 0.085 0.256

DNN-LDA in 0.78 0.034 0.149
in+out 0.75 0.032 0.125

out 1.55 0.071 0.226
DNN-NDA in 0.75 0.033 0.119

in+out 0.59 0.025 0.095



Table 3: Performance comparison of IBM speaker recognition systems with various configurations on C1–C10s (excluding C5).

System
EER [%] (minDCF10)

C1 C2 C3 C4 C6 C7 C8 C9 C10s

GMM-MFCC-NDA 1.2 (0.22) 1.8 (0.32) 1.8 (0.30) 1.1 (0.25) 2.9 (0.55) 3.3 (0.59) 1.1 (0.25) 0.7 (0.11) 11.7 (0.99)
DNN-MFCC-NDA 0.8 (0.11) 1.3 (0.16) 0.9 (0.13) 0.6 (0.11) 1.5 (0.34) 1.1 (0.32) 0.6 (0.14) 0.4 (0.05) 8.3 (0.94)
DNN-fMLLR-NDA 0.9 (0.13) 1.3 (0.17) 0.9 (0.10) 0.7 (0.08) 1.0 (0.24) 1.4 (0.31) 0.4 (0.10) 0.3 (0.05) 12.3 (0.99)

(i.e., 21% relative in terms of EER). This improvement may
be attributed to the robustness of NDA to multimodality in the
data, as discussed in Section 2.2.

For completeness, we also evaluated the performance of our
speaker recognition system on extended microphone and tele-
phone tasks, under normal and high/low vocal effort, (C1–C9)
as well as the 10sec–10sec condition in the NIST SRE 2010.
The results are provided in Table 3 for both the GMM and DNN
based systems. It is clear that the DNN based systems, with
either MFCCs or fMLLR features, perform significantly bet-
ter than the GMM based system. Additionally, the DNN based
system trained with raw MFCCs tend to perform better than
the fMLLR based system on interview microphone conditions
(C1–C2). We speculate that this is because the fMLLR trans-
forms, which are obtained using GMM-HMMs trained only on
telephony data, are unable to effectively reduce the variability
due to channel mismatch on microphone recordings. For other
tasks, overall, MFCC and fMLLR based systems perform sim-
ilarly except on the C10s where, among other challenges, the
VTL normalizations and the fMLLR transforms are also ad-
versely impacted by the short duration of recordings (i.e., 10 s).

4.2. Error analysis
In consideration of the obtained results, for example 0.59%
EER on the extended condition 5, we attempt to gain an un-
derstanding of some of the underlying issues in the system.
In particular, we would like to examine the characteristics of
the recordings contributing to some of the lowest scoring tar-
get trials. Towards this, we analyzed 265 recordings relating
to the 200 lowest scoring target trials and attempted to charac-
terize them with various potentially problematic properties. It
was found that, while many of the recordings are audibly ac-
ceptable, there are 76 with co-channel speech (either through
cross-channel feedback or from background competing speak-
ers), 51 with background noise, music, breath, sniffle, and fid-
geting sounds, 33 with very sparse speech activity, 8 with cock-
tail party noise, and 2 exhibiting signal clipping effects.

Our objective is to improve the target trial scores relating to
the problematic files. In particular, we focused our attention on
three categories: (i) cocktail party effect, (ii) general noise, and
(iii) co-channel speaker. These categories were chosen since
they may benefit from manually changing the SAD information
to more appropriately reflect the speech portions of the speaker
of interest (i.e., the target speaker).

Figure 2 shows the result of the manual modification of the
SAD labels by plotting the trial scores (both target and non-
target) that related to a selection of 18 modified SAD record-
ings. The x-axis represents the scores from trials with the orig-
inal recordings while the y-axis shows the scores for the modi-
fied recordings. Here, there were three target trials that greatly
improved in score. An interesting point is that not only did
some of the target scores significantly improve, but many of the
non-target scores also decreased. One view is that the presence
of a co-channel speaker has the effect of bringing the result-
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Figure 2: Scatter plot of the scores of repaired trials versus the
original trials. The asterisks (∗) represent the target trials while
the dots (·) represent the non-target trials.

ing i-vector closer to the general population of speaker i-vectors
(on average). This raises an important observation that not only
should a speech detection component be utilized but also a com-
ponent that only focuses on the speaker of interest (or the ho-
mogeneity of the class). The large movement in both target and
non-target trials was basically described by 8 of the 18 record-
ings. These consisted of intermittent noise conditions, cocktail
party noise, and co-channel (cross-channel) speech where the
interference was significant or comparable to the level of the
target speech. Interestingly, by manually modifying the SAD
for 18 recordings the EER is reduced from 0.59% to 0.56%.

Future work will involve the automation of such manual
processes (perhaps through the use of speaker diarization and
audio enhancement (e.g. see [31]), as well as expand the types
of issues addressed such as short-duration modeling [32] and
signal quantization issues.

5. Conclusions
In this paper, we presented the recent improvements made in
our state-of-the-art i-vector speaker recognition system. We in-
vestigated the impact of several key components of the system
on performance using extended core tasks in the NIST 2010
SRE that involved both microphone and telephone trials. Some
important observations made from our experiments were as fol-
lows: 1) the NDA was found to be consistently more effective
than LDA for inter-session variability compensation in i-vector
based speaker recognition, 2) the fMLLR based features pro-
vided better representation than raw MFCCs for matched data
conditions (i.e., telephony trials), and 3) the DNN based UBM
with large number of components (i.e., 10k senones) resulted
in remarkable improvements in the performance of our system.
To the best of our knowledge, the results presented in this paper
represent the best performances reported to date on the extended
core tasks in the NIST 2010 SRE.
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hancing with DNN autoencoder for speaker recognition,” in Proc.
IEEE ICASSP, Shanghai, China, March 2016, pp. 5090–5094.

[32] P. Kenny, T. Stafylakis, P. Ouellet, M. J. Alam, and P. Dumouchel,
“PLDA for speaker verification with utterances of arbitrary du-
ration,” in Proc. IEEE ICASSP, Vancouver, BC, May 2013, pp.
7649–7653.


