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Abstract

In this paper we propose two different i-vector represen-
tations that improve the noise robustness of automatic speech
recognition (ASR). The first kind of i-vectors is derived from
“noise only” components of speech provided by an adaptive
MMSE denoising algorithm, the second variant is extracted
from mel filterbank energies containing both speech and noise.
The effectiveness of both these representations is shown by
combining them with two different kinds of spectral features -
the commonly used log-mel filterbank energies and Teager en-
ergy spectral coefficients (TESCs). Using two different DNN
architectures for acoustic modeling - a standard state-of-the-
art sigmoid-based DNN and an advanced architecture using
leaky ReLUs, dropout and rescaling, we demonstrate the ben-
efit of the proposed representations. On the Aurora-4 multi-
condition training task the proposed front-end improves ASR
performance by 4%.

Index Terms: speech recognition, noise robustness, feature ex-
traction, i-vectors

1. Introduction

Despite recent significant advances in acoustic modeling using
deep neural networks (DNNs), automatic speech recognition
systems (ASR) are still not robust enough to deal with noise,
speaker and domain variabilities unseen during training. To im-
prove speech recognition performances in such settings, four
directions are actively pursued within the DNN acoustic mod-
els framework - feature compensation or signal enhancement,
feature or model space adaptation, data augmentation followed
by multi-condition style training and training with side infor-
mation about the undesired variabilities in the signal.

Under the first class of techniques, DNNs are trained using
noise robust feature representations compensated for additive
and convolutive distortions [1, 2, 3, 4]. The second class of
techniques identifies a subset of feature and/or model param-
eters, which can be adapted to the target speakers and chan-
nel characteristics [5, 6, 7, 8]. The third class of noise robust-
ness strategies is the multi-condition style training of the neu-
ral networks, after data augmentation with real and artificially
generated noises [9] providing significant performance gains,
whilst increasing the network training complexities [10]. This
approach is ofter either combined with noise robust feature rep-
resentations described earlier or can be used to train networks
directly on acoustic representations learning invariant transfor-
mations.

Finally, appending information about undesired noise and
speaker variabilities provided by additional features can be con-

The work was performed when S. Ganapathy was with IBM Re-
search.

Sriram Ganapathy

Department of EE

Indian Institute of Science, Bangalore, India

sriram@ee.iisc.ernet.in

sidered as the fourth class of techniques. This additional infor-
mation allows the network to automatically learn compensation
transformations during training. One of the early approaches in
this direction was the Noise Aware Training (NAT) [11], where
noise estimates were concatenated with the acoustic features for
improved robustness. Recently, speaker adaptation with speaker
codes [12] and i-vectors [13, 14] have been successfully de-
ployed for ASR.

In our earlier work, we demonstrated the usefulness of the
i-vector approach for ASR in addressing channel and noise re-
lated variabilities in addition to the speaker variability [15], es-
pecially in mismatched training and testing conditions. The i-
vector extractors in our case are trained at utterance level with-
out any explicit speaker information in training. In this paper
we investigate additional aspects of using the i-vectors to cap-
ture information about the noise for robust ASR systems. These
include: (a) a study on training i-vectors on feature representa-
tions from “noise only” signals and also from noisy speech sig-
nals containing both speech and noise, (b) an evaluation of the
effectiveness of these i-vectors variants in characterizing vari-
ous noise types, and (c) an assessment of the usefulness of the
proposed i-vector representations with various acoustic features
and modeling techniques for neural networks.

This paper focuses on the “matched” conditions scenario,
where noisy training data is used. As mentioned before, this is
a more challenging case for further improving the ASR perfor-
mance, since the multi-condition training has already provided
large gains.

ASR experiments in this paper are performed on the Au-
rora 4 task [16]- a medium vocabulary task, based on the Wall
Street Journal corpus. Using the multi-condition experimen-
tal framework of this task which utilizes a variety of noise
types for train and several test sets containing both seen and
unseen noise distortions, we investigate the usefulness of our
proposed i-vector representations. Instead of using an adaptive
“Minimum-Mean-Square-Error” (MMSE) denoising algorithm
to denoise signal, in Sec. 2 we describe how we use it to extract
the “noise only” components. Then, the Teager Energy Spectral
Coefficients (TESC) are described, in conjunction with the pro-
posed i-vector representations. Sec. 4 describes a factor analysis
framework for extracting i-vector representations both from the
“noise only” signals and from the noisy speech signals contain-
ing both speech and noise. Finally, the experimental results are
presented in Sec. 5 followed by a brief discussion. The paper
concludes with a summary of the proposed techniques in Sec. 6.

2. Noise Signal Estimation

The Aurora-4 task has 4 different training/testing scenarios, i.e.
ranging from matched to heavily mismatched noise conditions.



These conditions include additive and channel noise of various
types and levels. To compensate for these conditions, we have
employed a variation of the MMSE algorithm [17], extracting
information about the noise corrupting signals. The denoised
signals are not used in the ASR processing pipeline since ini-
tial experimental results have shown little or no improvement
in terms of ASR performance. Instead, we are using the noise
residual signals for extracting i-vectors, similarly to the NAT
approach [11].

In most cases, the MMSE denoiser is used to suppress the
noise component. Herein, the denoised signals are subtracted
from the original audio estimating a residual signal approximat-
ing the noise corrupting component. The key factor is that the
denoising algorithm has to adapt fast enough to the speech fluc-
tuations minimizing the speech signal leakage to the residual.
Thus, we chose a modified version of the MMSE denoiser [18],
capable of doing so.

The general idea of an MMSE-based denoiser is that the
speech component of noisy audio is obtained by multiplying
the noisy power spectrum by a gain

A2 =Gy (£,C) - R

where the gain G 42 depends on the assumed speech and noise
models [17], A and R are the denoised and noisy speech spec-
tral amplitudes, and £ and ¢ the priori and posteriori SNR esti-
mates, respectively. However, this process suffers from leakage
of the speech power to the noise estimates. In order to mini-
mize it, a time- and frequency-dependent smoothing parameter
is proposed in [17], where the estimate of speech presence prob-
ability is also investigated. Further, the gain function is trained
by an iterative data-driven training method [19] and a look-up
table is created based on the speech and noise variance esti-
mates. A safety net is also employed for the cases when the
noise levels suddenly increase, as described in [17]. That al-
gorithm provides a fast, adaptive estimate of the speech signals
minimizing their leakage to the residual, as shown in [17, 19].

3. Feature Extraction

It is shown that the human hearing physiology [20, 21, 22] can
be well modeled by the auditory filters, with bandwidths pro-
vided by the ERB(f) curve,

ERB(f) = 6.23(f/1000)? + 93.39(f/1000) + 28.52

where f is the filter center frequency dictated by the Bark fre-
quency scale. As that, the filter placing and bandwidth for
the proposed filterbank are described by this curve [23]. Con-
trary to the typical logmel coefficients estimated over a filter-
bank of triangular filters with 50% overlap [24], we propose
using the auditory-inspired filterbank and incorporate informa-
tion about the time-varying nature of speech using the instanta-
neous Teager-Kaiser (TK) energy [25]. The auditory filters are
approximated by the Gammatone filters and they are smoother
and broader than the triangular filters. The proposed features
are shown to be more robust in additive noise and provide addi-
tional acoustic information when compared to the logmels.

The TESC estimation algorithm is described with the fol-
lowing steps: (i) use a Gammatone filterbank to estimate a se-
quence of bandpass, speech signals. The number of filters is
ranging from 25 to 200 filters, (ii) estimate the mean TK-energy
for each one of the framed bandpass signals, (iii) estimate the
Spectral coefficients as the log mean energies. The first two

steps combine the auditory filtering scheme with a more “nat-
ural” approach of the speech TK-energy notion. These steps
differentiate the proposed algorithm from the typical logmel ex-
traction algorithm. The ASR results show significant improve-
ment, especially in noisy recognition tasks [25].

4. Factor Analysis Framework

The techniques outlined here are derived from the previous
work on joint factor analysis (JFA) and i-vectors [26, 27, 28].
We follow the notations used in [26]. The training data from
all the speakers is used to train a GMM with model parameters
A = {7c, e, X} where 7, pe and 3. denote the mixture
component weights, mean vectors and covariance matrices re-
spectively for ¢ = 1,..,C mixture components. Here, fi. is
a vector of dimension F' and 3. is of assumed to be diagonal
matrix of dimension F' x F'.

4.1. I-vector Representations

Let M denote the UBM supervector which is the concatena-
tion of p. for ¢ = 1,.., C and is of dimension of C'F" x 1. Let
=+ denote the block diagonal matrix of size CF' x C'F whose
diagonal blocks are 3. Let X' (s) = {z,i = 1,..., H(s)} de-
note the low-level feature sequence for input recording s where
¢ denotes the frame index. Here H(s) denotes the number of
frames in the recording. Each z; is of dimension F' x 1.

Let M (s) denote the recording supervector which is the
concatenation of speaker adapted GMM means p.(s) for ¢ =
1, .., C for the speaker s. Then, the i-vector model is,

M(s) = Mo + Vy(s) (1)

where V' denotes the total variability matrix of dimension C'F' x
M and y(s) denotes the i-vector of dimension M. The i-vector
is assumed to be distributed as (0, I).

In order to estimate the i-vectors, the iterative EM algo-
rithm is used. We begin with random initialization for the total
variability matrix V. Let px(c|x$) denote the alignment prob-
ability of assigning the feature vector @; to mixture component
c. The sufficient statistics are then computed as,

H(s)

Ne(s) = Z pa(clx;)

H(s)

Sx,c(s) = Z palclzs) (x] — pe)

(€3

Let N (s) denote the C'F' x C'F block diagonal matrix with di-
agonal blocks N1 (s)I, N2(s)I,..,Nc(s)I where I is the F' X F'
identity matrix. Let Sx (s) denote the C'F' x 1 vector obtained
by splicing Sx,1($)....Sx,c(s).

It can be easily shown [26] that the posterior distribution of
the i-vector py (y(s)|X (s)) is Gaussian with covariance I ™! (s)
and mean I~ (s)V*+ "1 Sx(s), where

I(s)=I+V*+£ 'N(s)V 3)

The optimal estimate for the i-vector y(s) obtained as
argmaxy [px(y(s)|X(s))] is given by the mean of the pos-
terior distribution.

For re-estimating the V' matrix, the maximization of the
expected value of the log-likelihood function (EM algorithm),
gives the following relation [26],

D N(s) VE[y(s)y(s)] = Sx()E[y"(s)] @
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Figure 1: 2D Projection of the 25D i-vector Space. PCA Projection is trained on Aurora-4 Train Set. (left) Projection of Noisy i-vectors,

(right) Projection of Noise i-vectors.

where E[.] denotes the posterior expectation operator. The so-
lution for Eq. (4) can be computed for each row of V. Thus,
the i-vector estimation is performed by iterating between the
estimation of posterior distribution and the update of the total
variability matrix (Eq. (4)).

4.2. Noise i-vector Estimation

The MMSE-based denoising algorithm described in Sec. 2
is used to separate the “noise” components from the “clean”
speech power spectrum. The noise power spectral components
derived from training recordings of Aurora-4 are used as fea-
tures to train a noise UBM. The zeroth and first order statis-
tics of this UBM are derived from the noise features according
to Eq. 2. These statistics are used to derive 25 dimensional i-
vectors. We refer to these i-vectors as noise i-vectors as these
i-vectors contain information purely from the noise component
of the noisy speech signal.

4.3. Noisy i-vector Estimation

In a manner similar to the noise i-vector estimation, we also
estimate i-vectors directly from the noisy speech signal (without
denoising). These i-vectors contain the information about the
broad interaction between the speech and noise signal. We refer
to these i-vectors as noisy i-vectors.

We applied the PCA training only on the noisy training data
(no clean speech) using only the “wv1” instances. The train-
ing data were standardized before estimating the PCA loadings.
Then, we kept the first two principal components (those with the
largest variance). During the training process, the clean speech
and the “wv2” channel noises remain unseen. In Fig. 1, we
plot the first two principal components of the noise and noisy
i-vectors. The noisy i-vectors derived from the noisy speech
have more structured information corresponding to the various
types of noise corrupting the input data. This is reflected in our
experiments, where the noisy i-vectors also contribute to higher
gains in the ASR performance. In Fig. 2, we show the PCA
projection for 2 types of additive noise, i.e. “restaurant” and
“street” noise, under different channel conditions, i.e. “wvl”
vs. “wv2”. In this figure, the “noisy” i-vectors from similar
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Figure 2: 2D Projection of the 25D i-vector Space: i-vectors of
Restaurant and Street Noise Under 2 Channel Conditions (wv1
vSs. wv2).

noise types appear to cluster together, despite the channel mis-
match, thus demonstrating a level of channel invariance. This is
particularly useful for the DNN since it learns the additive noise
conditions independent of any channel mismatches.

5. Experiments

The proposed techniques are evaluated on the Aurora 4 - a
medium vocabulary task, based on the Wall Street Journal cor-
pus [16]. We use the IBM Recognizer, Attila [29]. The AM
DNN:s are trained on the task’s multi-condition training set with
7137 utterances sampled at 16kHz from 83 speakers, and then
tested on a set of 330 utterances from 8 speakers. Half of the
training utterances is recorded with a primary Sennheiser mi-
crophone, while the second half is collected using one of 18
other secondary microphones. The noisy utterances are cor-
rupted with one of six different noise types (airport, babble, car,



restaurant, street traffic and train station) at 10-20 db SNR.

Similarly to the train set, the test sets are also recorded over
multiple microphones - a primary microphone and a secondary
microphone. In addition to the clean test data collected over
each of these microphones, the same six noise types used in
train are employed to create noisy test sets at 5-15dB SNR, re-
sulting in a total of 14 test sets. These test sets are commonly
grouped into 4 subsets - clean (test set A), noisy (test set B),
clean with channel distortion (test set C) and noisy with chan-
nel distortion (test set D).

An initial set of HMM-GMM models are trained to produce
alignments for the multi-condition training utterances. Unlike
the baseline systems, these models are built on the correspond-
ing clean training (7137 utterances) set of the Aurora 4 task in a
speaker dependent fashion. Starting with 39-dimentional VTL-
warped PLP features and speaker based cepstral mean/variance
normalization, an Maximum Likelihood system with fMLLR
based speaker adaptation and 2000 context-dependent HMM
states is trained. The alignments produced by this system, are
further refined using a DNN system also trained on the clean
training set with fMLLR based features.

Two different DNN architectures using sigmoid and leaky
ReLU (LReLU) non-linearities are examined. In contrast to the
ReLUs, in which the negative part is totally dropped, LReLUs
assign a non-zero slope to it. The leaky rectifier allows for a
small, non-zero gradient when the unit is saturated and not ac-
tive [30]

w(i)Tx, wTg >0
0.11U<")T9[:7 else

A = max(w"z,0) = { )

All the systems are trained on 40 dimensional logmel and TESC
spectra augmented with A and AAs. Each frame of speech
is also appended with a context of 11 frames after applying a
speaker independent global mean and variance normalization.

The DNN systems estimate posterior probabilities of 2000
targets using a network with either 6 or 7 hidden layers, each
having 1024/2048 units per layer. For the DNN systems us-
ing LReLUs, a fixed dropout of 50% is applied only on the
third and fourth hidden layers, only when the pre-training of
the networks is finished. Similarly, we have also applied a fixed
dropout rate of 20% to the input features [31]. Finally, rescal-
ing of the weights is performed after every mini-batch iteration.
All DNNs are discriminatively pre-trained before being fully
trained to convergence. After training, the DNN models are de-
coded with the task-standard WSJO bigram Language Model.

We first investigated the optimal DNN architecture for the
two different nonlinearities. We experimentally verified that
the LReLU-based DNN generalize better, due to sparser acti-
vations, requiring a smaller number of hidden nodes and layers.
In addition to that, the use of dropouts reducing the overfitting
to the data [31]. The 6 hidden layer LReLU DNN (6 x 1024)
provides a 6% rel. better performance in terms of average WER
compared to the corresponding 7 x 2048 DNN. On the other
hand, the sigmoid-based DNN needs more layers in order to
generalize. The best ASR results for this baseline architecture
are acquired when using 7 x 2048 layers, outperforming the
6 x 1024 architecture by 10% relative. Hereafter, all experi-
ments with “sigmoids” have 7 x 2048 layers and the “advanced”
DNN has 6 hidden layers with 1024 nodes each.

The following observations can be drawn from Tables 1
and 2: (a) in both experiments the recognition systems trained
on two different kinds of acoustic features benefit from utter-
ance level side information available in the i-vectors, (b) the

Table 1: DNN architecture is 7 x 2048 with Sigmoids. The
noise and/or noisy i-vectors are concatenated to the 11 x 3 x 40
noisy logmel or TESC features.

Multi-condition Training: Sigmoids

[ A [ B [ C [ D [ Aver.
logmel 5.85 | 1033 | 11.13 | 22.64 | 15.34
TESC 6.07 | 1024 | 11.34 | 21.82 | 14.98
logmel+Noise i-vectors | 5.34 | 9.81 11.54 | 21.13 | 1447
logmel+Noisy i-vectors | 5.51 | 10.43 | 11.41 | 22.44 | 15.29
logmel+
Noise+Noisy i-vectors 538 | 9.79 | 11.58 | 21.74 | 14.72
TESC+Noise i-vectors | 6.00 | 10.43 | 11.86 | 22.38 | 15.34
TESC+Noisy i-vectors | 5.70 | 9.70 | 12.27 | 21.38 | 14.61
TESC+
Noise+Noisy i-vectors 5.62 | 9.83 | 12.54 | 21.22 | 14.60

Table 2: DNN architecture is 6 x 1024 with LReLUs. The
noise and/or noisy i-vectors are concatenated to the 11 x 3 x 40
noisy logmel or TESC features.

Multi-condition Training: ReLU

| A B[ CJ] D |Aver
logmel 4.13 | 746 | 7.34 | 16.19 | 10.96
TESC 446 | 7.58 | 790 | 16.20 | 11.07
logmel+Noise i-vectors | 4.28 | 7.32 | 7.75 | 16.78 | 11.19
logmel+Noisy i-vectors | 4.35 | 7.35 | 8.14 | 16.73 | 11.21
logmel+
Noise+Noisy i-vectors 4.00 | 7.17 | 7.70 | 16.41 | 10.94
TESC+Noise i-vectors 424 | 737 | 7.62 | 16.26 | 10.98
TESC+Noisy i-vectors | 4.75 | 7.11 | 7.81 | 15.41 | 10.55
TESC+
Noise+Noisy i-vectors 426 | 7.12 | 7.64 | 15.44 | 10.51

gains from the i-vector systems are much less pronounced in
the LReLU based systems than in the sigmoid based system.
We hypothesize this could because of the inherent robustness
of the system coming from the nonlinearity being used, and
(c) the noisy i-vectors in general provide more gains than the
noise i-vectors in line with earlier visual observations. How-
ever both representations contain complimentary information as
most gains are observed when they used in combination.

6. Conclusions

One of the earlier conclusions in robust ASR is that noise
suppression is hardly helpful, especially when multi-condition
training is involved. However, we herein propose using the
noise suppression approach indirectly for estimating only the
noise signal residuals. Then, we estimate i-vectors based on
these residuals, providing information about the noise condi-
tions. The proposed algorithm can be compared with the NAT
coefficients [11], but the i-vectors are now estimated over the
entire signal, instead of the first (and last) few frames. The
experimental results in Tables 1 and 2 show that incorporating
such information about noise is helpful in most of the scenarios.
These improvements are consistent with the noise invariance of
the i-vectors (especially in the case of channel noise) shown in
Figs. 1 and 2. The proposed system is comparable with pre-
viously published systems [11], outperforming them by more
than 15% (relative).
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