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Abstract

Recognition of reverberant speech constitutes a challenging
problem for typical speech recognition systems. This is mainly
due to the conventional short-term analysis/compensation tech-
niques. In this paper, we present a feature extraction technique
based on modeling long segments of temporal envelopes of the
speech signal in narrow sub-bands using frequency domain lin-
ear prediction (FDLP). FDLP provides an all-pole approxima-
tion of the Hilbert envelope of the signal by linear prediction
on cosine transform of the signal. We show that the FDLP
modulation spectrum plays an important role in the robustness
of the proposed feature extraction. Automatic speech recogni-
tion (ASR) experiments on speech data degraded with a number
of room impulse responses (with varying degrees of distortion)
show significant performance improvements for the proposed
FDLP features when compared to other robust feature extrac-
tion techniques (average relative reductiont6s in word er-

ror rate). Similar improvements are also obtained for far-field
data which contain natural reverberation in background noise.
Index Terms: Frequency Domain Linear Prediction, Reverber-
ant Speech, Automatic Speech Recognition.

1. Introduction

When speech is corrupted by room reverberation, the short-

Here, H(n,wy) denotes the STFT of the room impulse re-
sponséei(t), n denotes the frame index amg; denotes théth
frequency bin.

The amount of reverberation in speech is generally charac-
terized by reverberation tim@¥) (time required for reflections
of a direct sound to decay B0 dB below the level of the di-
rect sound, typically in the range @)0-700ms). The main
assumption in conventional short-term channel compensation
techniques i (n, wi) = H (wr)¥n. While this assumption is
reasonable for distortions like linear telephone channel noises,
it is not valid for long-term artifacts like room reverberations.
Thus, by using conventional approaches like cepstral mean sub-
traction [3], feature warping [4], (where analysis windows for
deriving cepstral features are much shorter thgy), the effect
of reverberation cannot be suppressed.

The use of long-term mean subtraction has also been stud-
ied in the past for the suppression of room reverberation [5, 6].
This approach involves the subtraction of a mean estimate of
the log spectrum using a long-terr2sj analysis window, fol-
lowed by an overlap-add re-synthesis. In our past work, the
application of gain normalization dfs long sub-band tempo-
ral envelopes has also shown to be useful for speech recogni-
tion in room reverberations [7]. Sub-band temporal envelopes
of speech are derived using FDLP [8, 9]. The sub-band en-
velopes in long-term analysis windows and narrow sub-bands,

term spectral estimates are smeared. This causes a mismatchare gain normalized to provide robustness in reverberant envi-
in the features extracted from clean speech and results in a ronments [7]. These long-term sub-band envelopes are inte-
degradation in the ASR performance. Although several ap- grated in short-term window2% ms with a shift ofL0 ms) and

proaches have been proposed for recognition of multi-channel  are converted to cepstral features similar to conventional feature
reverberant speech (for example [1, 2]), single channel rever- gytraction techniques [10].

berant speech recognition continues to be a challenging task.
In reverberant environments, the speech signal that reaches
the microphone can be modelled as,

In this paper, we propose to analyze the robustness of the
FDLP feature extraction techniques using the concept of mod-
ulation spectrum. Spectral representation of amplitude modula-
r(t) = s(t) * h(t), 1) tion in sub-bands are called “Modulation Spectra” [11]. It has

been shown that important information for speech perception
wheres(t), h(t) andr(t) denote the original speech signal, the lies in thel — 16 Hz range of the modulation frequencies [12].
room impulse response and the reverberant speech respectively. In the FDLP framework, the modulation spectrum is defined as
The effect of reverberation on the short-time Fourier transform  the spectrum of the log FDLP envelope in sub-band. The mod-
(STFT) of the speech signa(t) can be represented as ulation spectrum in FDLP analysis is determined by a number
of parameters like the model order in FDLP, band-width of the
sub-band and the expansion factor used in the estimation. We
analyze the effects of each of these components in terms of the
average modulation spectrum as well as in terms of the robust-
ness of the final ASR system for reverberant speech recognition.

The proposed features are used for a connected digit recog-
nition task in TIDIGTS database. For reverberant speech recog-
nition experiments, the test data was convolved with a set
of 8 different room responses collected from various sources
[13, 14]. The ASR models are trained on clean TIDIGITS

R(nvwk) = S(nvwk)H(n7 wk)7 (2)

where S(n,wy) and R(n,wy) are the STFTs of the clean
speech signak(t) and reverberant speect{t) respectively.

This research was funded by the Office of the Director of Netio
Intelligence (ODNI), Intelligence Advanced Research &ctg Activ-
ity (IARPA), through the Army Research Laboratory (ARL). Aliate-
ments of fact, opinion or conclusions contained herein avsdtof the
authors and should not be construed as representing thealofiiews
or policies of IARPA, the ODNI, or the U.S. Government.



5000 T T T

(@)
0 Ll ki
~5000 . . . .
0 0.2 0.4 0.6 0.8 1
5000
(b)
0
0 0.2 0.4 0.6 0.8 1
5000
(©
0 . . -
0 0.2 0.4 0.6 0.8 1
Time (s)

Figure 1: lllustration of the all-pole modelling with FDLP. (a) a
portion of speech signal, (b) its Hilbert envelope and (c) all-pole
model obtained using FDLP.

data and are tested using clean as well as reverberant speech

data. In these experiments, the proposed features provide signif-
icant improvement over the baseline features (average improve-
ment of40 %). Further, we also show consistent improvements
with experiments on naturally reverberant connected digits data
recorded using a far-field microphone.

The rest of the paper is organized as follows. In Sec. 2, the
FDLP technique for feature extraction is explained. The speech
recognition setup using connected digits is described in Sec. 3.
The modulation spectrum analysis using FDLP envelopes is de-
tailed in Sec. 4. Speech recognition experiments with the pro-
posed features are reported in a 5. In Sec. 6, we conclude with
a discussion of the proposed features.

2. Frequency domain linear prediction

Linear prediction (LP) analysis exploits a simple form of redun-
dancy in a signal by modelling the current sample as a linear
combination of a fixed number of past samples. By extract-
ing the linear dependence, the original signal is described as a
result of passing a temporally uncorrelated (white) excitation
sequence passed through a fixed all-pole digital filter. When
LP analysis is applied in time domain, the filter comprises a
parametric approximation of its power spectrum. The duality of
time and frequency domain means LP can be applied to discrete
spectral representation of a signal. This process is called as fre-
quency domain linear prediction (FDLP). In a manner similar
to parametric representation of power spectrum by time domain
linear prediction, FDLP provide a parametric representation of
Hilbert envelope of the signal [9]. Fig. 1 plots the FDLP enve-
lope which approximates the Hilbert envelope of the signal.

2.1. Estimating robust temporal envelopes

For long segments of the signal in narrow sub-bands, Hilbert
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Figure 2: Block schematic of FDLP feature extraction.

of room impulse response can be assumed to be slowly varying
compared to clean speech. In a first approximation, normalizing
gain in sub-band FDLP envelopes suppresses the multiplicative
effect present in spectral autocorrelation function of the rever-

berant speech [7]. This technique is called as gain normalization
and it helps in supressing the effect of reverberation.

2.2. Cepstral features

For the purpose of feature extraction, the input speech signal
is decomposed into sub-bands, where FDLP is applied in each
sub-band to obtain a parametric model of the temporal enve-
lope. The whole set of sub-band temporal envelopes forms a
two dimensional time-frequency representation (similar to con-
ventional short-term spectrogram) of the input signal energy.
This two-dimensional representation is convolved with a rect-
angular window of duration 25 ms and resampled at a rate of
100 Hz (10 ms intervals, similar to the estimation of short term
power spectrum in conventional feature extraction techniques).
These sub-sampled short-term spectral energies are converted
to short-term cepstral features similar to the conventional PLP
feature extraction technique [10]. In our experiments, we use
39 dimensional cepstral features containing 13 cepstral coeffi-
cients along with the delta and double-delta features. The block
schematic for the FDLP feature extraction technique is shown
in Fig. 2.

3. Experimental setup

We apply the proposed features and techniques in a connected
word recognition task with a modified version of the Aurora
speech database using the Aurora evaluation system [16]. We
use the complex version of the back end proposed in [17]. The
training dataset contains 8400 clean speech utterances, consist-
ing of 4200 male and 4200 female utterances downsampled to 8
kHz and the test set consist of 3003 utterances [5]. For reverber-
ant speech recognition experiments, the test data was convolved
with a set of 8 different room responses collected from various
sources [14, 15] and natural farfield data [13].

4. Modulation spectrum and robustness

The relation between modulation spectrum and parameters of
FDLP are analyzed in this section. Modulation spectrum is the
spectral representation of amplitude modulation component of
sub-band signal. Average modulation spectrum (AMS) is the
Monte-Carlo average estimate of modulation spectrum from a
large number of sub-bands of various speech utterances. In or-

envelope of the reverberant speech can be approximated as the der to compute AMS, we choose 120 utterances from Aurora
convolution of Hilbert envelope of clean speech and Hilbert en- speech database (60 male and 60 female) and average the mod-
velope of room impulse response. Hilbert envelope and the ulation spectral estimate over all the sub-bands of all the ut-
spectral autocorrelation form Fourier transform pairs. There- terances. For each utterance, the signal is decomposed into a
fore, spectral autocorrelation of reverberant speech is product number of sub-bands and the FDLP envelope is computed in
of spectral autocorrelation of clean speech and spectral autocor- each sub-band as described in section 2. Modulation spectrum
relation of room impulse response. The spectral autocorrelation is the Fourier transform of the log FDLP envelope.
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Figure 3: AMS for various model ordegsper second per sub-
band.
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Figure 4: Word recognition accuracy as function of the model
order for clean and two types of reverberant data. The best per-
formance in each condition is highlighted using the star sign.

4.1. Model order

In a linear prediction scenario, the model order corresponds to
number of previous samples used in prediction. In the FDLP
analysis, the model order controls the number of distinct tem-
poral peaks in the sub-band envelope. Model order has a direct
influence on the AMS, which is illustrated in Fig. 3. As seen
here, the higher the model order, the lower the roll-off of AMS
in the modulation frequency domain.

When speech is corrupted by room reverberation, the sub-
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Figure 5: Word recognition accuracy as function of the expan-
sion factor for clean and two types of reverberant data.
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Figure 6: Word recognition accuracy as function of the band-
width of the sub-band for clean and two types of reverberant
data.

4.2. Envelope expansion

In the past, it has been shown that the time domain linear pre-
diction can be modified to estimate a transformed spectral enve-
lope instead of the original spectrum [18]. The autocorrelations
derived from the modified power spectrum are used for linear
prediction. In FDLP framework, spectral autocorrelations can
be derived from transformed Hilbert envelopes where the trans-
formation here corresponds to raising the original Hilbert enve-

band envelopes are smeared in time. The degree of smearing is lope to a power. When the Hilbert envelope is compressed

determined by the reverberation time (T60). In this case, higher
order FDLP results in the estimation of large number of signal
peaks which are not robust. On the other hand, a lower model
order fails to capture enough information needed for good ASR
performance in clean conditions (or when there is a lower de-
gree of reverberation). This tradeoff is illustrated in Fig. 4,
where we plot the ASR accuracy for clean conditions and on
two types of reverberant data (which has reverberation time of
300 and 700 ms) as a function of the FDLP model order. The
best performance in each condition is also highlighted. It can
be seen that a lower model order is good when there is signif-
icant amount of reverberation, while a higher model order is
preferred for clean conditions.

(r < 1), the resulting model tends to approximate the valleys of

the envelope better [18]. However, expansion of the envelopes
(r > 1) results in enhanced modelling of the peaks of the enve-
lope.

We apply the transform linear prediction in FDLP and de-
rive features for ASR. When speech is corrupted by room rever-
beration, the high energy peaks (where the signal to reverber-
ant component ratio is high) can be more robustly estimated as
compared to the valleys of the envelope. Thus, FDLP features
derived using expanded envelopes 1) are more robust in
reverberant environments. This is illustrated in Fig. 5, where we
plot the ASR accuracy for clean conditions as well as the two
reverberant conditions as function of the the expansion factor



Table 1: Word accuracies (%) using a clean test data, average
word accuracy foB conditions of artificial reverberant data and
average word accuracy fdrconditions of natural far-field mi-
crophone data.

timated, these are converted to short-term features and are used
for ASR similar to conventional short-term spectral features. In
reverberant environments, the proposed features provide signif-
icant improvements compared to other feature extraction tech-
nigues. The application of the proposed techniques for larger

PLP | CMS | LDMN | LTLSS | FDLP vocabulary tasks and speaker recognition tasks as well as for
Clean 99.7 | 99.7 99.6 99.6 98.9 signals distorted by additive and convolutive noise are currently
Art. Revb. | 65.6 | 71.9 | 757 | 76.6 | 86.7 pursued.
Far fiel 69.1| 73.6 76.3 76.8 86.4
7. References
[1] J.L.Flanagan, J.D. Johnston, R. Zahn and G.W. Elko, “Qaterp
4.3. Bandwidth steered Microphone Arrays for Sound Transduction in Large

In the past work [7], a decomposition 86 bands was found

to be robust in reverberant environments. However, for a fixed
number of sub-bands, the bandwidth of the sub-bands can be
varied keeping the band overlap constant. As mentioned be-
fore, the use of narrow sub-band increased the validity of the
assumptions made in the gain normalization. But, narrow sub-
band also means that the modulation extent of the correspond-
ing AMS reduces (given by half of bandwidth of the sub-band).
As seen in Fig. 6, as the bandwidth reduces the robustness in
reverberant environment improves significantly while the per-
formance in clean conditions degrades moderately.

(2]
(3]
(4]

(5]

5. Results (6]

In this section, we use the proposed features for recognition of
reverberant speech fro® different artificial room responses
collected from various sources [13, 14, 15] with reverbera-
tion time ranging from200 to 800ms. The use of different
room responses results intest sets consisting &003 utter-
ances each. To investigate the performance of the proposed fea-
ture extraction for naturally reverberant speech in background
noise, we also perform experiments on a set of connected digits
recorded in an ICSI meeting room using a far-field mic [13]).
The test data consist of four parallel channels TR0 utter-
ances each . As before, we use the HMM models trained with
the clean speech in the training set of modified Aurora task.

For the proposed FDLP features, we use a expansion fac-
tor » = 4, with 15 poles per second per sub-band and sub-
band bandwidth 0100 Hz. The results for the proposed FDLP
technique are compared with those obtained for several other
robust feature extraction techniques proposed for reverberant
ASR namely Cepstral Mean Subtraction (CMS) [3], Long Term
Log Spectral Subtraction (LTLSS) [6] and Log-DFT Mean Nor-
malization (LDMN) [5]. The average performance in clean con-
ditions as well as i3 conditions of artificial reverberation and
conditions of natural far-field data is shown in Table 1. For the
different artificial room responses, the proposed FDLP features, [14]
on the average, provide a relative error improvement3st
over the other feature extraction techniques considered. Further, [15]
on the4 conditions of far-field test data, we obtain a relative er- [16]
ror improvement of about1%. The performance improvement
is achieved with a moderate degradation in clean conditions.

(7]

(8]

(9]

[10]

[11]

[12]

[13]

6. Conclusions [17]

In this paper, we have studied the effect of various parameters in
deriving FDLP modulation spectrum for robust representation
of speech features. These parameters include the model order,
the bandwidth of the sub-band and the expansion factor used in
transform linear prediction and provide substantial robustness
in reverberant environments. Once the FDLP envelopes are es-

(18]

Rooms,"J. Acoust. Soc. Am., vol. 78, no. 11, pp. 1508-1518, Nov.
1985.

H. Wang and F. Itakura, “An Approach to Dereverberatising
Multi-Microphone Sub-band Envelope Estimation,”Rroc. ICA,
Toronto, Canada, 1991, pp. 953-956.

A.E. Rosenberg, C. Lee and F.K. Soong,“Cepstral Chahoe!
malization Techniques for HMM-Based Speaker Verification,”
Proc. ICSLP, Yokohama, Japan, 1994, pp. 1835-1838.

J. Pelecanos, and S. Sridharan, “Feature warping foustob
speaker verification”, Proc. Speaker Odyssey 2001 Speaker
Recognition Workshop, Greece, pp. 213-218, 2001.

C. Avendano,Temporal Processing of Speech in a Time-Feature
Face, Ph.D. thesis, Oregon Graduate Insititute, 1997.

D. Gelbart, and N. Morgan, “Double the trouble: handlimgjse
and reverberation in far-field automatic speech recogniti@roc.
ICSLP, Colorado, USA, pp. 2185-2188, 2002.

S. Thomas, S. Ganapathy, and H. Hermansky, “Recognitioe-of
verberant speech using frequency domain linear predittigRE
Sgnal Proc. Letters, Vol. 15, pp. 681-684, 2008.

R. Kumerasan and A. Rao, “Model-based approach to eneelop
and positive instantaneous frequency estimation of sigwéls
speech applications'Journal of Acoustical Society of America,
Vol. 105 (3), Mar. 1999, pp. 1912-1924.

M. Athineos, and D. Ellis, “Autoregressive modelling @&npo-
ral envelopes,|EEE Tran. Sgnal Proc., Vol. 55, pp. 5237-5245,
2007.

H. Hermansky, “Perceptual Linear Predictive (PLP) Amséd of
Speech,’J. Acoust. Soc. Am,, vol. 87, no. 4, pp. 1738-1752, Apr.
1990.

T. Houtgast, H. J. M. Steeneken and R. Plomp, “Predicpeech
intelligibility in rooms from the modulation transfer funoti, I.
General room acousticsicoustica 46, pp. 60-72, 1980.

R. Drullman, J.M. Festen and R. Plomp,“Effect of Reduc®tow
Temporal Modulations on Speech ReceptionJ, Acoust. Soc.
Am., Vol. 95(5), pp. 2670-2680, 1994.

“The ICSI Meeting Recorder
http://www.icsi.berkeley.edu/ Speech/mr.

Project,”

“ICSI Room Responses,” http://www.icsi.berkeleyéspeech/papers/
asru01-meansub-corr.html.

“ISCA Speech Corpora,” http://www.isca-studentg/oorpora.

H.G. Hirsch and D. Pearce,“The AURORA Experimental Frame
work for the Performance Evaluations of Speech Recognityea S
tems under Noisy Conditions,” iRroc. ISCA ITRW ASR 2000,
Paris, France, 2000, pp. 18-20.

D. Pierce and A. Gunawardana, “Aurora 2.0 speech retogrin
noise: Update 2,” irProc. ICSLP Session on Noise Robust Rec.,
Colorado, USA, 2002.

H. Hermansky, H. Fujisaki, Y. Sato, “Analysis and syrsiseof
speech based on spectral transform linear predictive m&taod
Proc. ICASSP, April, 1983.



