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ABSTRACT not used in training (mis-matched conditions). Since specific device

Language identification (LID) of speech signals in conditions likeo_peratmg points, modulation type, carrier bandwidths and transmis-

adverse radio communication channel is a challenging problem. Ijon path artifacts i_nfluence the acoustic Sig“"?"x the performance is
this paper, we address the scenario of improving the performance gfeverely degraded in these mis-maiched conditions.

a LID system on mis-matched radio communication channels (haot In this paper, we consider the problem of enhancing the LID sys-

seen in training) given a small amount of speech data without lane™m performance given a small amount of unsupervised adaptation

guage labels. We develop a co-training procedure using two di(_1ata from the new channel. Recentl_y, supervised adaptation with

verse acoustic LID systems to improve the performance by effec§ma” amounts of data was shown to improve th? performan_ce for a

tively utilizing the adaptation data. The acoustic LID systems us ew channel [4]. In the. past, the use of unsupervised data to improve
he performance on mis-matched telephone channels was studied for

different features, projection methods and back-end classifiers. A peaker recognition using background model synthesis [5] and fea-

suming that the classification errors for the diverse LID systems arﬁr‘re manbina 161, However. the artifacts introduced by a radio com-
independent, the co-training procedure improves the classificatio pping [6]. ’ Y

qunication channel are more non-linear and time varying compared

accuracy of each system. Various LID experiments are performe . . :
0 the linear convolutive effects seen in telephone channels.

on the mis-matched channels in a leave-one-out setting for a var In this paper. we address the broblem of unsupervised chan-
ety of noise conditions. In these experiments, with small amounts | ad It tp per, w th “traini P laorith u7 ug -tl S
of unsupervised data from the new channel, we show that the prcp-eI amailﬁ a I(r)n u;lnrg Wﬁi Ck? ;ﬁ;;'ngﬂ? gi%rcli m rEd].n 0 :ﬁ'nr:ngn:sl
posed co-training procedure provides significant improvement (a ? Iead' g proce ku F 'f_c u Thes et efr_’g te ce a IO gf ul-
erage relative improvement G 96) over the baseline scenario of (B e LA e e oiher classfir and vice-versa. It has
no-adaptation and noticeable improvements of aldéu®% over a Y . . = :

i been shown that co-training can provide considerable improvements
self-training framework. ) . . .

) _using moderate assumptions of conditional independence among the
Index Terms— Radio Channel Speech, Language Identifica-classifiers [8]. In the past, co-training was successfully applied to

tion, Co-training, Unsupervised Adaptation. various tasks like email classification [9], dialect identification [10],
speech summarization [11] and gesture recognition [12].
1. INTRODUCTION For the co-training of the LID systems in an unsupervised chan-

nel adaptation setting, we develop two diverse acoustic systems. The

The speech signal received from a typical radio communication chaiiwo systems use different front-end representations, projection mod-
nel has artifacts which are different from additive noise or convolu-els as well as back-end classifiers. Various LID experiments are per-
tive distortions like reverberations. The signal degradation in thigormed with small amount of adaptation data from the new channel.
scenario includes linear frequency transpositions, non-linear amplin these experiments, we show that the adaptation procedure using
tude scale variation over a long-time span and harmonic distortions g proposed co-training framework provides significant improve-
The DARPA program named robust automatic transcription of speed¢hents over the baseline unseen channel setting (average relative im-
(RATS) targets the development of speech systems operating on highigvements of aboui2%) as well as a self-training scenario (aver-
distorted speech recorded over “degraded” radio channels. Tthe daage relative improvements of abol?%). We also show that the
consists of recordings obtained from retransmitting a clean signgtroposed co-training procedure can be used in conjuction with sys-
over eight different radio channel types, where each channelintrdem combination approaches which are typically used in language
duces a unique degradation mode specific to the device and moduligcognition systems (for example, [3]).
tion characteristics [1]. The rest of the paper is organized as follows. In Sec. 2, we

Recently, the language identification task was performed on thigescribe the co-training framework of semi-supervised learning. A
data using the same channels in training and testing (matched cobrief description of the LID systems is given in Sec. 3. Adaptation
ditions) [2, 3]. Although reasonable language identification perfor-experiments in the unsupervised setting are described in Sec. 4. We
mance is obtained in this case, the set of eight channels does not regiso report additional experiments with varying amounts of adapta-
resent the realistic scenario in which various other radio communication data. In Sec. 5, we conclude with a summary of the paper.
tion network and device characteristics can cause severe mis-match
with _the training conditions. In_order to simulate the;e effects, wey  SEMI-SUPERVISED LEARNING USING CO-TRAINING
consider the leave-one-out setting where one of the eight channels is

This work was supported in part by Contract No. D11P020192C°'training,i,s asemli-super_vised Iear_ning algorithm where multiple
DOI/NBC under the RATS program. The views expressed are thbgee ~ Weak classifiers (trained with supervised data) are used together to
author and do not reflect the official policy or position of thepartment of ~ boost the learning from the unsupervised data. The algorithm works
Defense or the U.S. Government. by using the most confidently classified examples from one classifier
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Fig. 2. Block schematic of LID systems used in co-training.
this plot, the examples chosen for re-learning the clasdifiés-)
represent unbiased training samples over the range ofue to the
X5 conditional independence assumption. This can boost the learning of

the classifieh, and a similar procedure can be repeated by reversing
the roles ofh; andhs.

3. LID SYSTEMS FOR CO-TRAINING

To adapt the LID systems to noisy acoustic conditions induced by a
new radio communication channel, we use two different views gen-

erated by LID systems which use diverse acoustic features, projec-
tion methods as well as back-end classifiers. The block schematic of
the two systems is shown in Fig. 2.

Xy 3.1. MFCC-PCA-SVM System

The input signal is processed using Wiener filtering [14] and Mel-

frequency cepstral coefficients [15] are derived frdmMel-bands

in the 125 — 3800 Hz range. We derivé4 cepstral features which

are used to estimate shifted-delta-coefficients (SDC) [16] (with a
WM 7-1-3-7 configuration). A Gaussian mixture model-universal back-

Fig. 1. lllustration of co-training using a two dimensional Gaussianground model (GMM-UBM) with1024 components is trained us-

example. Here, the confident labels from classifiefz:) (identi- N9 the training and development portion of the LID data [1]. The

fied as points lying outside the shaded region) are used to re-train trRflapted Gaussian mixture means are concatenated to form the super-
classifierhs (z2). vector (SV). We train a principal component analysis (PCA) projec-

tion model with800 dimensions on the SVs. The reduced dimension

to improve the learning of the other classifier. The learning algorithmPCA vectors are used in training support vector machines (SVM) for
depends on the conditional independence of the classifiers given ti§&ch language of interest with a third order polynomial kernel [2].
class labels [7]. The performance improvements from co-training
are significant when this assumption is validated [8]. 3.2. FDLP-FA-MLP System

We illustrate the co-training algorithm using a simple exam- o o
ple [13]. Consider a binary classification problem on the featurd réguency domain linear prediction (FDLP) represents an autore-
space¥ = X x X, whereX; X correspond to two different views gressive modeling technique for deriving the sub-band Hilbert en-
of the data. For a given data sample= [z1, z»], the assumption of velopes [17]. These sub-band envelopes represent temporal- mod

class conditional independence is the following, lation information in each sub-band. The FDLP envelopes are inte-
grated in short-term windows32 ms with a shift of10 ms) to de-
P(z1, z2|y) = P(z1|y)P(x2]y) for y € {0,1}. (1)  rive cepstral coefficients which are used to constfgadimensional

SDC features. We train a GMM-UBM model using the FDLP fea-
The algorithm works in the following way. A weak classifier,(z1), tures with1024 components. The zeroth and first order GMM statis-
trained using the labeled data, is applied to the unlabeled data. Thigs for each recording are obtained and these are used for training a
examples with high confidence are selected and are used along witictor analysis (FA) model [18]. We us®0 dimensional i-vectors
the labeled data to train classifigs(z2) on the second views.  derived from the FA model to train a three layer multi-layer percep-
This process is repeated with rolestlafandh, reversed. tron (MLP). The MLP is trained witt500 hidden units and uses a
The intuition behind the algorithm is depicted using a two di- soft-max function at the output nodes. We use the standard back

mensional example in Fig. 1. In this figure, the viewsand - propagation learning with cross entropy error function.

are assumed to be one dimensional and the class conditional distri-

bupons are assumed to be jointly Gaussian and uncorrelated. Tge3 Learning from Unsupervised Data

points scattered in the plot represent unlabeled data. The data points

inside the marked region are ignored and the points outside represefince the projection methods used in the two systems are unsuper-

the confident examples selected by the clasdifi¢r;). As seenin  vised, the unsupervised data from the channel of interest can be used
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Fig. 3. Unsupervised adaptation with co-training using labels generated frofO0hE-FA-MLP system to re-learn the MFCC-PCA-SVM
system. Here, we also show the self-training alternative to learning frisapervised data.

(a) Channel Seen in Training and the confident examples for one system represent informative ex
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(b) Channel Mismatch The development and test data for the LID experiments use the LDC
L [ Postive Examples T N L releases of the Phase-1 RATS LID development [1]. This consists
g s Barnes . o £y J of speech recordings from previous NIST-LRE clean recordings as
2 Smarradth e 4 g S well as other RATS clean recordings passed through eight (A-H)
P * ‘ 1 noisy communication channels. The five target languages are Ara-

e s 0T o7 o 0z od o5 s bic, Farsi, Dari, Pashto and Urdu. In addition to this, the database
MLP Scores consists of several other imposter languages. In our experiments, the
UBM is trained using9, 123 recordings from the matched channels
Fig. 4. Scatter plot of the FDLP-FA-MLP versus MFCC-PCA-SVM and the FA/PCA models are trained wiih, 078 recordings. Sepa-
system scores for data from channel-H under two conditions ; (ajate UBM and projection models are trained for each leave-one-out

channel-H used in training and (b) channel-H not used in training. Setting. The test set consists bf, 328 recordings from the eight
noisy channels. The recordings used here contain alfuteconds

of speech. The training data contains akia hours per channel.
in addition to the original data for retraining the projection models  We compare the performance of the FDLP-FA-MLP system (de-
(either FA or PCA). The architecture used for classifier re-trainingnoted as\/ L P) and the MFCC-PCA-SVM systen${’ M). Since it
from the unsupervised adaptation is shown in Fig. 3. Here, we coris typical in state-of-the-art language recognition systems to perform
trast the traditional method of self-training using the unsupervisedystem combination using linear fusion, we also report the perfor-
samples with the co-training framework. mance using a linear combination with equal weighti6gX/ B).

In the past, co- training algorithm was used where the amount of he choice of equal weighting avoids the requirement of validation
unlabeled data was much larger than the amount of the labelled da@ata from the mis-matched channels in determining the combination
On the contrast, this paper explores the scenario where the unlabelégights.
data is scarce. As described in Sec. 2, the co-training procedure re- In the first set of experiments (Table 1), we use channel-D as
quires the validation of the conditional independence assumption dhe mis-matched channel withhours of data from each language
the two systems. In the case of LID systems, this represents tH@2 hours in total) used for unsupervised adaptation. We report the
scores obtained for each system on the unseen data. Fig. 4 plots theerage performance on the matched channels as well as the per-
scores of the FDLP-FA-MLP system versus the MFCC-PCA-SVMformance on the mis-matched channel (channel-D in this case). For
system for one languag& R DU). We plot the scores for two sce- self-training as well as co-training techniques, we use only one it-
narios, (a) The first one represents the condition where the channetation by choosing one third of the confident examplielsdqurs of
of interest (in this case, channel-H) is seen is training and (b) thelevelopment data). More iterations were not used as the amount of
second scenario where the channel of interest is not seen in traiadaptation data was small compared to typical co-training applica-
ing. As seen in this plot, the scores from the two systems are highltions with large amounts of unsupervised data.
correlated when the channel is seen in training. In the mis-matched As seen in Table 1, the performance is severely degraded when
channel case, the scores from the two systems are less correlaté channel of interest (in this case channel-D) is not used in training.
(which would mean more independence for the joint Gaussian cas@he performance is improved by incorporating the unsupervised data

AN
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Fig. 5. Performance (EER %) of the LID system usirgjhours of unsupervised data for various leave-one out channdlsEAd) with the
baseline mis-matched channel for classification and subspace riegré&iv-adapt), unsupervised adaptation with self-training, co-training
and supervised adaptation.

Table 1. Performance (EER %) of the LID system usit@ihours of unsupervised development data from channel-D using BN/F| and
COMB systems for seen channels (average performance over seaanels) and mis-matched channel-D.

Cond SVM MLP COMB
' Seen| Mis-mat. | Seen| Mis-mat. | Seen| Mis-mat.
Completely Unseen | 1.6 11.3 2.1 11.2 14 9.4
Projection Retrain 1.6 10.0 2.2 9.2 14 7.2
Self Training 15 9.5 2.3 8.2 1.3 6.5
Co-training 14 7.2 2.4 7.8 1.3 5.6
| Supervised Adaptatio 1.3 | 47 [ 23 ] 55 [ 13 ] 34 |

in retraining the projection models. This is consistent for re-learningem, the co-training provides) % relative improvement compared

the PCA as well as FA models. The self-training framework used irto the self-training system in terms of overall EER and al2u¥o

the MLP/SVM models provides improvements of abddb relative  improvement over the self-training compared to the supervised adap-

for SVM models and about0 % relative for the MLP and COMB tation upper-bound. Furthermore, the proposed adaptation frame-

models. The co-training provides significant improvements over thevork improves the baseline scenario of no-adaptation by a8

self-training framework for the SVM system and the COMB systemusing only a small amount of unsupervised adaptation data.

(with relative improvements &5 % in the SVM system ant4 % in

the COMB system). Compared to the scenario without any adapta- 5 SUMMARY

tion, the co-training framework improves the performance relatively

by about22% which amounts to reducing % of the gap between | this paper, we have explored the application of the co-training

supervised and unsupervised adaptation scenarios. learning algorithm for unsupervised adaptation of LID systems to
We repeat the unsupervised adaptation experiments using tfspeech data from a new radio channel. We use diverse acoustic LID

leave-one-out strategy for a variety of channels (A,D,E and H)s&he systems based on MFCC/FDLP features, with different projections

channels represent a variety of modulation and noise characteristisshemes (PCA/FA) and back-end classifiers (SVM/MLP). The di-

seen in radio communication networks [1]. For example, channeyersity of the systems enhances the co-training learning technique

A represents a narrow-band FM modulation (NFM) with carrier off- where the unsupervised data is used with one system to generate

set at the receiver, channel-D represents single side-band modulatieonfident labels for re-learning the other system. Various experi-

with linear frequency shift and channel-H represents a NFM transments performed using a small amount of adaptation data from a

mitter with a wide-band FM receiver. new channel show that the proposed co-training provided significant
In these experiments, we use hours of unsupervised adapta- improvements over the baseline. In future, we plan to investigate

tion data which is used for re-training the PCA/FA subspaces. Thiis fran_1ework for the scengario_with large amounts on unsupervis_ed
performance for the mis-matched channel alone is reported for thgdaptatlon data, the comblne}tlon of .the co-training approach with
SVM, MLP and COMB systems used in no-adaptation (projectior/ °2USt SPeech features and with multiple LID systems.

re-training), self-training and co-training and supervised mode (show

in Fig. 5). The supervised adaptation mode represents the oracle per- 6. ACKNOWLEGMENTS
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