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Abstract
The performance of an automatic speech recognition (ASR)
system degrades severely in noisy and reverberant environments
in part due to the lack of robustness in the underlying represen-
tations used in the ASR system. On the other hand, the au-
ditory processing studies have shown the importance of mod-
ulation filtered spectrogram representations in robust human
speech recognition. Inspired by these evidences, we propose
a speech representation learning paradigm using data-driven 2-
D spectro-temporal modulation filter learning. In particular,
multiple representations are derived using the convolutional re-
stricted Boltzmann machine (CRBM) model in an unsupervised
manner from the input speech spectrogram. A filter selection
criteria based on average number of active hidden units is also
employed to select the representations for ASR. The experi-
ments are performed on Wall Street Journal (WSJ) Aurora-4
database with clean and multi condition training setup. In these
experiments, the ASR results obtained from the proposed mod-
ulation filtering approach shows significant robustness to noise
and channel distortions compared to other feature extraction
methods (average relative improvements of 19% over baseline
features in clean training). Furthermore, the ASR experiments
performed on reverberant speech data from the REVERB chal-
lenge corpus highlight the benefits of the proposed representa-
tion learning scheme for far field speech recognition.
Index Terms: unsupervised learning, data-driven modulation
filtering, convolutional restricted Boltzmann machine, speech
recognition.

1. Introduction
Inspite of recent advances in deep learning, the development
of speech recognition systems in noisy and reverberant envi-
ronments continues to be a challenging task. However, the hu-
man auditory system exhibits remarkable robustness to many of
these environmental artifacts. While the early processing stages
in the auditory periphery are mimicked in speech feature extrac-
tion for automatic speech recognition (ASR) systems [1, 2, 3],
the recent evidence from human auditory system reveal that the
inherent robustness may be primarily attributed to the spectro-
temporal filtering performed by cortical neurons [4, 5, 6].

For ASR, several studies have attempted incorporating the
knowledge of spectro-temporal filters (for example, Gabor fil-
tering [7, 8]). In general, these approaches define a series of
spectral (scale), temporal (rate), and spectro-temporal modula-
tion filters that can be seen as modeling the tuning of cortical
neurons to different spectro-temporal patterns. For the ASR ap-
plication, use of temporal modulations such as RASTA filtering
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[9], TRAPS [10] and HATS [11] have been well studied. A su-
pervised data driven approach for deriving temporal modulation
filters using the linear discriminant analysis (LDA) is explored
in [12]. Also, a recent approach to separable spectro-temporal
Gabor filter bank features is proposed in [13].

In this paper, we propose to use the speech spectrogram
to learn the two dimensional (2-D) spectro-temporal modula-
tion filters in an unsupervised data-driven paradigm. While a
data-driven approach was previously attempted for learning the
peripheral auditory filter bank [14, 15, 16], this work represents
the first attempt for designing modulation filters in an unsuper-
vised data-driven fashion to the best of our knowledge.

The proposed filter learning method is developed using con-
volutional restricted Boltzmann machine (CRBM) [17]. In par-
ticular, 2-D filters characterizing the distribution of spectro-
temporal modulations are derived from large amount of unsu-
pervised speech spectrogram data. In this approach, we do not
apply any prior knowledge of the perceptual studies of auditory
processing and allow the data to learn the key spectro-temporal
modulation content present in the data. We also propose a rank-
1 contraint on learning the 2-D filters using contrastive diver-
gence in CRBM in order to have separable 2-D filters. After
learning a filter, the projection of the input spectrogram on the
learnt filter is removed and the residual spectrogram is then used
in the CRBM framework for learning subsequent filters. Once
a set of filters are derived, an unsupervised filter selection cri-
terion is used and the input spectrogram is filtered using the
selected modulation filters to derive features for ASR.

The ASR experiments are performed on the Wall street
Journal (WSJ) Aurora-4 database with clean and multi condi-
tion training set up using a deep neural network (DNN) acoustic
model. Further, the ASR experiments are performed on rever-
berant speech provided in the REVERB challenge [18]. The
results from these experiments indicate that the features de-
rived from proposed filters provide significant improvements
over other noise robust front-ends. We also investigate the per-
formance of the proposed features in a semi-supervised setting
where availability of labeled data is limited.

The rest of the paper is organized as follows. In Sec. 2, we
describe the data driven framework for learning 2-D modula-
tion filters and the filter selection criterion. Sec. 3 describes the
ASR experiments with the proposed front-end followed by the
results. We conclude with a summary of the proposed front-end.

2. 2-D filter learning
2.1. Restricted Boltzmann machine

The restricted Boltzmann machine (RBM) [19] is a two-layer,
undirected graphical model with a set of binary hidden units h
(as output layer), a set of (binary or real-valued) visible units v
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(as input layer), and symmetric connections between these two
layers represented by a weight matrix W. The energy function
of the Gaussian RBM is given as:

E1(v,h, θ) = −
∑
i,j

viWijhj −
∑
i

bivi −
∑
j

cjhj (1)

where i and j are indices that iterate over visible and hidden
units, respectively, model parameters are θ = (W,b, c), with
b and c being the bias at visible and hidden layer, respectively.
The conditional probability model is given by:

P (hj = 1|v) = σ(cj +
∑
i

viWij) (2a)

P (vi = 1|h) = σ(bi +
∑
j

Wijhj), (2b)

where σ is the sigmoid function defined by σ(x) = 1/(1 +
exp(−x)) and Wij is the ijth element of W. We use the con-
trastive divergence (CD) learning algorithm for RBM training
[20] using gradient ascent based optimization procedure. With
regard to visible-hidden weights, the one-step CD (Gibbs sam-
pler) followed by weight update is given as:

4WijJ(W,b, c;v) =< vihj >data − < vihj >model,

W′ = W + η(4WJ), (3)

where J is the log likelihood defined as the exponential of nega-
tive of E1, < . > denotes the expectation under the distribution
specified by the subscript, vi and hj are the ith and jth elements
of visible and hidden layer, respectively, W′ is the updated W
matrix, and η is the learning rate.

2.2. Convolutional RBM

The local characteristic of the signal is ignored by RBMs, so
a given feature detected by weights must be learned separately
for every location [21]. While RBMs learn to reconstruct and
identify the features of each signal as a whole, convolutional
neural networks (CNNs) learn the mapping to the targets using
feature maps locally [22, 23]. The CNNs require supervised
training data and typically operate on smaller contextual win-
dows (11 frames). A convolutional operation can be added to
RBM learning by weight sharing, reconstructing and identify-
ing the features of the signal locally [17, 21].

A CRBM is a probabilistic model where hidden units H (di-
mension NHr × NHs ) represent the presence/absence of local
features in subwindows of visible units V (NVr × NVs ) [24].
The joint energy function of CRBM is given as:

E2(V,H, θ) = −
∑
q

Hq(W �V(q))−
∑
i

bVi −
∑
q

cHq

Here, W is the weight matrix (filter) of dimension (NWr ×
NWs = (NVr − NHr + 1) × (NVs − NHs + 1)), V(q) is
subwindow of patch V with top left corner at unit q and with
the dimensions same as that of W, index q iterates over units
of V, � denotes the dot product of matrices after linearizing its
elements, θ = (W, b, c) are the model parameters, Hq is the
element of the matrix H at location q. The conditional proba-
bility model is given by:

P (Hq = 1|V) = σ((W �V(q)) + c) (4a)

P (Vp = 1|H) = σ((W? �H(p)) + b), (4b)

where σ is the sigmoid function, W? is the horizontally and
vertically flipped version of the original filter, H(p) is subwin-
dow of patch H with top left corner at unit p and size same as

Figure 1: Block schematic of the proposed CRBM architecture
for learning modulation filter W) (forward pass of CRBM).

that of W, index p iterates over units of H, Vp is the element of
the matrix V at location p. The one-step contrastive divergence
(Gibbs sampler) approximation for CRBM is given by:

4WJ(V; θ) =< V ?H >data − < V ?H >model (5)

where ? is the 2-D filtering operation. The weight matrix
is updated in an iterative learning process over several steps.
The block schematic of the proposed modulation filter learning
scheme from speech spectrogram through convolutional RBM
(CRBM) is shown in Figure 1. The input layer V consists of a
cell of 2-D patches sampled from speech spectrogram. Each
2-D patch consists of sub-band energy trajectory for 1.5 sec
of speech along temporal dimension and an all-band energy
trajectory along spectral dimension (40 bands) (NVr = 150,
NVs = 40).

2.3. Rank-1 constraint on weight learning

To constrain the weight matrix W as a separable rank-1 matrix,
we define W as the outer product of 1-D rate filter r and 1-D
scale filter s, i.e., W = rs>. The gradient of J is computed
with respect to r and s separately (unlike with respect to each
element of W). Let Ṽ = V ? s>. The gradient ascent equation
with respect to rate filter (r) gives:

4rJ(V; θ) =< Ṽ ?H >data − < Ṽ ?H >model (6)

where s is the scale filter obtained from previous iteration, V
and H being the input 2-D patch and hidden activation patch,
respectively. Let H̃ = H?r. The gradient ascent equation with
respect to scale filter (s) gives:

4sJ(V; θ) =< V ? H̃ >data − < V ? H̃ >model (7)

Hence, the filter update equations become:

r′ = r+ η(4rJ); s′ = s+ η(4sJ) (8)

where η is the learning rate. Subsequently, the 2-D filter W is
updated as W′ = r′s′

>. We perform several iterative steps to
learn the 2-D filters and the filters are thus learnt purely from a
generative modeling perspective.

2.4. Multiple filter learning and selection

In all our analysis, we find that the first 2-D filter learnt from
the input mel spectrogram is invariably a low-pass in both rate
and scale domain (Figure 2 (a) and 3 (a)). For learning multi-
ple 2-D filters that are less redundant [25], we use the follow-
ing approach. After an initial 2-D filter is learnt (we name it
R1-S1), we remove the contribution of learnt rate component
(R1) from the original spectrogram by subtracting the original
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Figure 2: The magnitude response of the proposed 2-D data
driven filters (rank-1) obtained from clean mel spectrogram.

spectrogram from the rate filtered spectrogram. This residual
(containing the high rate and full scale information) is fed back
to CRBM for learning next filter (R2-S1). Similarly, we remove
the contribution of learnt scale component (S1) from the orig-
inal spectrogram and the residual (containing the full rate and
high scale information) is fed to CRBM for learning next filter
(R1-S2). We also remove the contribution of both (R1) and (S1)
from the original spectrogram for learning filter (R2-S2) from
the residual. This method, similar to matching pursuit (MP) al-
gorithm [26], allows us to learn irredundant set of filters. For
the CRBM learning, the 2-D weight matrix W is initialized as
the outer product of the 1-D rate and scale filters learnt from
CRBM using corresponding 1-D inputs sampled from spectro-
gram. Figure 2 shows the magnitude response of the learnt 2-D
rank-1 filters obtained from mel spectrogram of clean speech
data of Aurora-4 corpus. Similarly, we learn the 2-D rank-1
filters from mel spectrogram of multi condition training data,
shown in Figure 3. As seen here, deriving the filters using MP
style algorithm provides irredundant 2-D filters.

In order to select 2-D filters for ASR (4 learnt from rank-
1 and 4 learnt from full rank), the average number of active
hidden units of the CRBM (with a total of 4488 hidden units
for NWr × NWs = 15 × 8) is computed for each 2-D filter
by a forward pass operation of the set of input spectrograms
through the CRBM. The average active count is computed us-
ing P (Hq = 1|V) summed over all q units (count of active
units for a given input) and averaged over a number of input
patches from the validation data. Based on the highest average
active count, the (R2-S1) and (R2-S2) filter with rank-1 con-
straint gives maximum average active units amongst all filters,
as shown in Figure 4. Similar trend is observed for 2-D filters
for multi condition training data. This criterion represents a data
driven unsupervised approach to filter selection.

The features for ASR are derived using two streams of fil-
tered spectrograms using the rank-1 filters (R2-S1 and R2-S2).
These spectrogram streams are concatenated and fed to a DNN
based ASR system. The input features are mean-variance nor-
malized at utterance level before DNN training.

3. Experiments and results
The WSJ Aurora-4 corpus is used for conducting ASR experi-
ments. This database consists of continuous read speech record-
ings of 5000 words corpus, recorded under clean and noisy
conditions (street, train, car, babble, restaurant, and airport) at
10 − 20 dB SNR. The training data has two sets of 7138 clean
and multi condition recordings (84 speakers). The validation
data has two sets of 1206 recordings (14 speakers) for clean and
multi condition and test data has 330 recordings (8 speakers),
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Figure 3: The magnitude response of the proposed 2-D data
driven filters (rank-1) obtained from mel spectrogram of multi
condition training data.
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Figure 4: The average count of active hidden units of CRBM
model for full rank and rank-1 filters for clean training.

each of the 14 clean and noise conditions. The test data is clas-
sified into group A - clean data, B - noisy data, C - clean data
with channel distortion, and D - noisy data with channel dis-
tortion. The speech recognition Kaldi toolkit [27] is used for
building the ASR. A deep belief network- deep neural network
(DBN-DNN) with 4 hidden layers having 21 frames of input
temporal context and a sigmoid nonlinearity is discriminatively
trained using the training data and a tri-gram language model is
used in the ASR decoding. We compare the ASR performance
of the proposed modulation filtering approach with traditional
mel filter bank energy (MF) features, power normalized filter
bank energy (PN) features [28], advanced ETSI front-end (ET)
[29] and RASTA features (RAS) [9].

The ASR performance in clean training condition is re-
ported in Table 1. From this table, it can be observed that PN
and ET features provide better performance compared to the
MF and RAS features. The data driven modulation filtering ap-
proach on mel spectrogram provides significant improvement
in noisy and channel distortion scenarios (average relative im-
provements of 19 % over MF features).

In the multi condition training and test scenario (reported in
Table 2), the MF features perform better than all other baseline
features. The proposed feature extraction improves the perfor-
mance of ASR compared to the baseline features by average
relative improvements of 9% over MF.

3.1. Reverberant speech recognition

The ASR experiments on reverberant speech data are performed
using WSJCAM0 corpus in a single channel scenario, released
as a part of REVERB challenge [18]. This database consists
of 7861 recordings from 92 training speakers, 1488 record-
ings from 20 development test (dt) speakers and 2178 record-
ings from two sets of 14 evaluation test (et) speakers, with
each speaker providing about 90 utterances. These recordings
were carried out with two sets of microphone- head mounted as
well as desk microphone positioned about half meter from the
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Table 1: Word error rate (%) in Aurora-4 database for clean
training condition with various feature extraction schemes.

Cond MF PF ET RA Prop
A. Clean with same Mic

Clean 3.4 3.3 3.2 3.5 3.2
B: Noisy with same Mic

Airport 21.9 18.3 15.0 19.3 13.2
Babble 19.6 16.0 15.5 19.9 13.8
Car 8.0 6.2 9.8 7.9 5.7
Rest. 24.9 22.9 20.5 23.0 17.3
Street 19.5 17.8 19.5 18.7 15.6
Train 19.8 16.3 17.4 19.4 17.2
Avg. 18.9 16.2 16.3 18.0 13.8

C: Clean with diff. Mic
Clean 15.3 11.7 14.5 16.0 13

D: Noisy with diff. Mic
Airport 40.1 36.4 31.4 39.2 30.4
Babble 37.3 34.2 32.1 38.5 33
Car 24.9 21.5 24.9 24.8 19.3
Rest. 39.6 39.0 35.4 39.1 31.6
Street 35.7 34.1 35.0 35.8 31.8
Train 35.6 31.8 33.2 36.4 33.3
Avg. 35.2 32.8 32.0 35.6 29.9

Avg. of all conditions
Avg. 24.7 22.1 21.9 24.4 19.9

speaker’s head. The database consists of three subsets: train-
ing data set (Train) - for both clean and multi condition train-
ing using simulated reverb data, a simulated test dataset (Sim)
and a naturally reverberant recording of the test dataset (Real).
The 2-D rank-1 filters are learnt from mel spectrogram of Train
dataset - separately for both clean and multi condition. Table
3 shows the ASR performance for clean and multi-condition
training conditions using MF, PN and the proposed modulation
filtering (R2-S1+R2-S2) applied on MF.

It can be observed that the proposed features perform better
than MF and PN under almost all test conditions with clean and
reverb training data. For the clean training, there is an average
relative improvement of 29 % over MF features on Sim test data
and about 8 % with Real test data. The results with the proposed
front-end are better than the best published results in REVERB
Challenge [18]. For the multi condition reverb training (simu-
lated), there is an average relative improvement of 4 % over MF
features on the Sim test data and the performance is similar to
MF with Real test data.

3.2. Semi-supervised training

For semi-supervised ASR training, the Aurora-4 clean and
multi-condition training set up is used with 70, 50 and 30 % of
the labeled training data. The modulation filters are learnt using
full unsupervised clean and multi-condition training data, re-
spectively, available in the training set with mel spectrogram in-
put. The performance comparison of ASR with semi-supervised
training is shown in Table 4 for MF and the proposed feature
scheme for the average of all test data conditions (14 condi-
tions). These results indicate that the proposed features are
more resilient to reduced amounts of labeled training data as
compared to the baseline system (especially for clean training
condition). The proposed features perform significantly better
than MF features for the average of all test conditions (average
relative improvement of 26 % for clean training and average rel-
ative improvement of 8 % for multi-condition training with use
of 30 % labeled training data).

Table 2: Word error rate (%) in Aurora-4 database for multi
condition training with various feature extraction schemes.

Cond MF PF ET RA Prop
A. Clean with same Mic

Clean 4.2 4.1 4.5 4.6 4
B: Noisy with same Mic

Airport 7.5 7.9 8.0 8.1 7
Babble 7.7 7.9 7.9 8.7 7.3
Car 4.7 4.9 5.6 5.0 4.4
Rest. 9.8 10.2 11.0 11.0 8.7
Street 8.6 8.8 10.0 9.0 8
Train 8.7 8.3 9.3 9.1 8.4
Avg. 7.8 8.0 8.6 8.5 7.3

C: Clean with diff. Mic
Clean 8.4 7.8 8.0 9.7 7.6

D: Noisy with diff. Mic
Airport 19.7 20.9 18.5 20.1 17
Babble 20.3 20.9 19.3 20.0 19.2
Car 11.8 13.1 14.1 12.5 10.1
Rest. 21.7 23.7 21.8 23.1 18.6
Street 19.1 20.0 19.4 18.9 17.3
Train 18.3 19.6 19.6 19.9 18.1
Avg. 18.5 19.7 18.8 19.1 16.7

Avg. of all conditions
Avg. 12.1 12.7 12.6 12.8 11.1

Table 3: Word error rate (%) in REVERB Challenge database
for clean and multi-condition training.

Cond. MF PF Prop MF PF Prop
Clean training Multi training

Sim dt 37.2 36.3 28.2 11.9 11.3 11.7
Sim et 35.8 35.2 23.6 12.2 11.5 11.5
Real dt 70 73.3 63.6 25.9 25.7 26.5
Real et 73.1 77 68.9 30.9 30.7 30.6

Table 4: Word error rate (%) in Aurora-4 database for clean and
multi condition training using lesser amount of labeled training
data (70 %, 50 %, 30 %).

Training data 100 % 70 % 50 % 30 %
MF Prop MF Prop MF Prop MF Prop

Clean 24.6 19.9 26.3 21.1 29.3 22.5 33.8 24.9
Multi cond. 12.1 11.1 15.8 14.4 17.6 16.3 21 19.3

4. Summary
The various ASR results presented in the previous section in-
dicate that learning data-driven 2-D modulation filters provides
useful information for ASR tasks in noisy and reverberant en-
vironments. This may be attributed to identification of the rel-
evant spectro-temporal modulations learnt from the data. The
major contributions of this work are:

• Proposing an unsupervised data-driven approach to learn
spectro-temporal modulation filters.

• Using the rank-1 constraint in gradient ascent method to
obtain separable 2-D filters in the CRBM framework.

• Obtaining multiple irredundant filters using residual
spectrograms in rate and scale domain.

• Unsupervised filter selection using average number of
active hidden units in the CRBM.

• Robustness in noisy and reverberant conditions using the
proposed modulation filtering scheme.

• Resilience to semi-supervised training of ASR (with lim-
ited labelled data) using proposed features.
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