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Abstract—In this paper, we present a new noise compen-
sation technique for modulation frequency features derived
from syllable length segments of subband temporal envelopes.
The subband temporal envelopes are estimated using frequency
domain linear prediction (FDLP). We propose a technique for
noise compensation in FDLP where an estimate of the noise
envelope is subtracted from the noisy speech envelope. The
noise compensated FDLP envelopes are compressed with static
(logarithmic) and dynamic (adaptive loops) compression and are
transformed into modulation spectral features. Experiments are
performed on a phoneme recognition task as well as a connected
digit recognition task where the test data is corrupted with
variety of noise types at different signal to noise ratios. In
these experiments with mismatched train and test conditions, the
proposed features provide considerable improvements compared
to other state of the art noise robust feature extraction techniques
(average relative improvement of 25 % and 35 % over the
baseline PLP features for phoneme and word recognition tasks
respectively).

I. I NTRODUCTION

The performance of a typical automatic speech recognition
(ASR) system severely degrades when it encounters speech
from noisy environments. Such performance degradation is
mainly caused by mismatch in training and operating con-
ditions. A survey of the main approaches that have been
pursued in the direction of reducing this mismatch is reported
in [1]. These approaches can be classified as noise robustness
in features (for example [2]), enhancement of speech (for
example [3], [4]) and acoustic model compensation (for exam-
ple [5]). Although the problem of suppressing the uncorrelated
additive noise has been widely studied in the past, single
channel noisy speech recognition continues to be a challenging
task.

When speech signal is corrupted by additive noise, the
signal that reaches the microphone can be written as

x[m] = s[m] + n[m], (1)

wherex[m] is the discrete representation of the input signal,
s[m] represents the clean speech signal which is corrupted
by noise n[m]. Assuming that the speech and noise are
uncorrelated, we obtain

PX(m,ωk) = PS(m,ωk) + PN (m,ωk), (2)

wherePX(m,ωk), PS(m,ωk) and PN (m,ωk) are the short
term power spectral densities (PSD) at frequencyωk of the

noisy speech, clean speech and noise respectively.
Conventional feature extraction techniques for ASR estimate

the short term (10 − 30 ms) PSD of speech in bark or mel
scale [6]. Hence, most of the recently proposed noise robust
feature extraction techniques apply some kind of spectral
subtraction in which an estimate of the noise PSD is subtracted
from the noisy speech PSD (for example [7]).

Alternatively, features for speech recognition can be de-
rived from trajectories of spectral energies in the individual
frequency subbands (for example [8]). Spectral components
of long term amplitude modulations in individual frequency
subbands are called modulation spectra. The modulation spec-
tral representations have been used in the past for predicting
speech intelligibility in reverberant environments [9]. They
are now widely applied in many engineering applications
like audio coding [10], noise suppression [11], etc. Feature
extraction techniques based on modulation spectrum have also
been proposed for ASR (for example [12], [13]).

In our previous work [14], we have shown that a combi-
nation of static and dynamic modulation frequency features
perform well for telephone channel speech recognition. Here,
the input speech signal is decomposed into a number of
critical bands. In each subband, long term envelopes are ex-
tracted using frequency domain linear prediction (FDLP) [15],
[16]. FDLP envelopes are compressed using a static and
a dynamic compression. The static compression stage is a
logarithmic operation and dynamic compression stage uses
adaptive compression loops [17]. The compressed envelopes
are transformed into modulation spectral components which
are used as features for a phoneme recognition system.

In this paper, we propose a noise compensation technique
for these modulation frequency features based on temporal
envelope subtraction. In each subband, an estimate of the noise
envelope is derived from the input noisy speech. This estimate
is subtracted from the noisy speech envelope before the
application of linear prediction in frequency domain. Then, the
noise compensated FDLP envelopes are used to derive static
and dynamic modulation frequency features. These features
are used for a phoneme recognition task using the hybrid
hidden Markov model - artificial neural network (HMM-ANN)
phoneme recognition system [18] as well as a connected digit
recognition task using the Tandem system [19]. The test data
for these tasks consists of speech corrupted with variety of
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Fig. 2. Block schematic for the modulation spectrum based feature extraction technique.
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Fig. 1. Static and dynamic compression of the temporal envelopes: (a) a
portion of speech signal, (b) the temporal envelope extracted using the Hilbert
transform [20], (c) the FDLP envelope, which is an all pole approximation to
(b) estimated using FDLP, (d) static compression of the FDLP envelope and
(e) dynamic compression of the FDLP envelope.

real world noises at different signal to noise ratios (SNR).
In these experiments, the proposed noise compensation tech-
nique provides considerable improvements in phoneme/word
recognition accuracies over other robust feature extraction
techniques.

The rest of the paper is organized as follows. In Sec. II,
we describe the FDLP technique for the estimation of the
temporal envelopes using linear prediction in spectral domain.
The extraction of modulation frequency features from the
temporal envelopes is explained in Sec. III. The proposed
noise compensation technique is described in Sec. IV. Experi-
ments performed with these modulation frequency features for
phoneme and word recognition tasks are reported in Sec. V.
In Sec. VI, we conclude with a discussion of the proposed
features.

II. FREQUENCYDOMAIN L INEAR PREDICTION

The Hilbert envelope, which is the magnitude of the analytic
signal, represents the instantaneous energy of a signal in
the time domain. Hilbert envelopes are typically computed
using the Hilbert transform operator in the time domain or
by exploiting the causality of discrete Fourier transforms
(DFT) [20]. Alternatively, a parametric model of the Hilbert

envelopes can be extracted using linear prediction in frequency
domain [15], [16].

FDLP is an efficient technique for auto regressive (AR)
modelling of temporal envelopes of a signal. Typically, au-
toregressive (AR) models have been used in speech/audio ap-
plications for representing the envelope of the power spectrum
of the signal (time domain linear prediction (TDLP) [21]). This
paper utilizes AR models for obtaining smoothed, minimum
phase, parametric models for temporal rather than spectral
envelopes. The duality between the time and frequency do-
mains means that AR modeling can be applied equally well
to discrete spectral representations of the signal insteadof
time domain signal samples. For the FDLP technique, the
magnitude response of the all pole filter approximates the
Hilbert envelope of the signal (in a manner similar to the
approximation of the power spectrum of the signal using
TDLP [21]).

Fig. 1 shows the AR modelling property of FDLP. It
shows (a) a portion of speech signal, (b) its Hilbert envelope
computed using the Fourier transform technique [20] and (c)
an all pole approximation for the Hilbert Envelope using
FDLP.

III. F EATURE EXTRACTION

The block schematic for the modulation spectrum based
feature extraction technique [14] is shown in Fig. 2. Long
segments of the speech signal (1000 ms) are decomposed
into frequency subbands by windowing the discrete cosine
transform (DCT). In our experiments, we use a critical band
decomposition. For example, if the signal is sampled at8 kHz,
we get8000 DCT coefficients for a1000 ms window of the
signal. These8000 coefficients are windowed into15 critical
bands using bark spaced windows in the DCT domain. For
deriving the spectral autocorrelations (defined as the Fourier
transform of temporal envelope [16]), the subband DCT signal
is converted back to the time domain using inverse discrete
Fourier transform (IDFT). The IDFT is performed on the
entire subband DCT for1000 ms signal. The IDFT length
corresponds to original signal length (8000). The IDFT phase
containing the subband carrier signal is ignored as the FDLP
operation is independent of this component. The magnitude
IDFT component represents a non parametric Hilbert enve-
lope [15]. The Hilbert envelope is transformed using DFT
into spectral autocorrelations of the subband signal, which are
used for linear prediction. The order of the linear prediction
corresponds to1 pole per 10 signal samples. It can be
mathematically shown that the application of linear prediction
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Fig. 3. Dynamic compression of the subband FDLP envelopes using adaptive
compression loops [17].

in DCT domain approximates the temporal envelope of the
signal [16]. The steps involved in converting the subband DCT
signal into envelope AR model parameters are referred to as
FDLP. In our experiments, we use the gain normalized FDLP
envelopes as these are found to be more robust to channel
noise [22]. The whole set of subband temporal envelopes
forms a two dimensional (time-frequency) representation of
the input signal energy.

The subband temporal envelopes are then compressed using
a static compression which is a logarithmic function and a
dynamic compression scheme [17]. The dynamic compression
is realized by an adaptation circuit consisting of five consec-
utive nonlinear adaptation loops as shown in Fig. 3. Each of
these loops consists of a divider and a lowpass filter with time
constants ranging from5 ms to 1000 ms. The input signal
is divided by the output signal of the lowpass filter in each
adaptation loop. Sudden transitions in the subband envelope
that are fast compared to the time constants of the adaptation
loops are amplified linearly at the output, whereas the slowly
changing regions of the input signal are suppressed. In this
way, changes in the input signal like onsets and offsets are
emphasized in the dynamic compression stage. This is also
illustrated in Fig. 1, where we show the static (Fig. 1.(d))
and dynamic compression (Fig. 1.(e)) of the FDLP envelopes.
The dynamic compression stage is followed by a low pass
filter [17].

Since speech recognition system requires speech features
sampled at 100 Hz (i.e one feature vector every 10 ms),
the compressed temporal envelopes are divided into200 ms
segments with a shift of10 ms. The temporal envelopes
from the two compression streams are then converted into
modulation spectral components using DCT, corresponding to
the static and the dynamic modulation spectrum. We use14
modulation frequency components from each of these streams,
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Fig. 5. Log FDLP envelopes for the fifth critical band of cleanspeech
and speech corrupted with babble noise at10 dB SNR. (a) without noise
compensation (b) with noise compensation.

yielding modulation spectrum in the0 − 35 Hz range with a
resolution of2.5 Hz. This choice of modulation frequencies is
obtained using phoneme recognition experiments on the cross
validation data in TIMIT database [14].

IV. T EMPORAL ENVELOPE SUBTRACTION

When speech signal is corrupted by noise, the FDLP en-
velopes are modified in such a way that their dynamic range
is reduced. This is illustrated in Fig. 5.(a), where we plot
the subband FDLP envelopes in clean and noisy conditions
for the same speech utterance. The effect of noise is more
pronounced in the valleys of the subband envelopes, where
the mismatch between clean and noisy speech is significant.
When modulation frequency features are derived from the
uncompensated FDLP envelopes, the performance of the ASR
system degrades significantly in noisy conditions.

The proposed noise compensation technique for FDLP is
shown in Fig. 4. A voice activity detector (VAD) operates
on the input speech signal to indicate the presence of non-
speech frames. The VAD is implemented using the same
technique proposed in [7]. The VAD output is a flag indicating
the speech/non-speech decision for every short term frame of
speech (with a length of25 ms and a shift of10 ms).

As mentioned before (Sec. III), long segments of the input
speech signal are transformed to DCT domain where a critical



TABLE I
PHONEME RECOGNITION ACCURACIES(%) FOR DIFFERENT FEATURE EXTRACTION TECHNIQUES ON CLEANTIMIT TEST DATA AS WELL AS THE

AVERAGE PERFORMANCE FOR THE FOUR NOISE TYPES- ”RESTAURANT”, ”B ABBLE”, ”S UBWAY ” AND ”EXHIBITION HALL ” WITH SNRS 0,5,10,15 AND

20 DB .

SNR (dB) PLP-9 PLP-SS-9 MVA-9 ETSI-9 FDLP FDLP-NC
clean 66.8 60.7 63.8 65.7 67.6 65.4

0 14.6 11.0 24.3 28.2 24.6 30.1
5 20.6 25.1 32.8 37.3 33.3 39.9
10 28.9 39.1 41.2 46.5 42.7 50.0
15 38.7 49.6 48.3 53.8 52.0 57.9
20 48.9 56.1 53.7 58.9 58.6 62.4

Avg. 30.3 36.2 40.1 44.9 42.2 48.1

band sized windowing is applied. The subband Hilbert en-
velopes are obtained as the magnitude IDFT of the DCT signal.
We apply short term envelope subtraction on these subband
Hilbert envelopes for noise compensation. This is achievedin
two steps. In the first step, we window the Hilbert envelopes
into short term segments (of length25 ms with a shift of10
ms). The next step is to subtract an estimate of the short term
noise envelope from these segments.

Since the noise component is assumed to be additive in
signal domain (Eq. 1), we can write

X[k] = S[k] + P [k], (3)

where X[k], S[k] and P [k] are thekth DCT coefficient of
noisy speech, clean speech and noise respectively. By virtue
of the orthogonality property of the DCT matrix, the speech
and noise continue to be uncorrelated in the DCT domain.
Further, the application of magnitude DFT gives

EX(m, bi) = ES(m, bi) + EN (m, bi), (4)

where EX(m, bi), ES(m, bi) and EN (m, bi) are the short
term non parametric Hilbert envelopes of the noisy speech,
clean speech and noise respectively for the subbandbi. Eq. 4
shows that the effect of noise can be alleviated if an estimate
of EN (m, bi) is subtracted from the short term noisy speech
envelopeEX(m, bi).

An estimate of the short term noise envelope is obtained
by averaging the envelope segments in the non-speech region
(from the beginning and end of speech utterance). This esti-
mate is subtracted from the short term envelopes of speech
similar to the conventional spectral subtraction technique [4].
The noise compensated short term envelopes are synthesized
using overlap-add to obtain the long term subband envelopes.
These are converted back to subband DCT domain and used
for FDLP. Static and dynamic modulation frequency features
are derived from the noise compensated FDLP envelopes as
described in Sec. III.

Fig. 5.(b) provides an illustration of the effect of this noise
compensation technique on the subband FDLP envelopes for
clean and noisy speech. The noise compensation procedure
modifies the clean envelopes in such a way that the valleys
of trajectory are deemphasized. This is due to the fact when
the compensated value reduces below zero, we employ the
corresponding magnitude value. Although this method of

compensation slightly reduces the information in valleys of
clean speech signal (as illustrated by the drop in recognition
performance in clean conditions), it significantly reducesthe
mismatch between FDLP envelopes extracted from clean and
noisy speech. In this view, the proposed approach operates like
an envelope normalization procedure as opposed to a noise
removal technique.

V. EXPERIMENTS AND RESULTS

A. Phoneme Recognition Task

The phoneme recognition system is based on the Hidden
Markov Model - Artificial Neural Network (HMM-ANN)
paradigm [18]. The multi layer perceptron (MLP) estimates the
posterior probability of phonemes given the acoustic evidence
P (qt = i|xt), whereqt denotes the phoneme index at frame
t, xt denotes the feature vector taken with a window of
certain frames. The relation between the posterior probability
P (qt = i|xt) and the likelihoodP (xt|qt = i) is given by the
Bayes rule,

p(xt|qt = i)

p(xt)
=

P (qt = i|xt)

P (qt = i)
. (5)

It is shown in [18] that the neural network with sufficient ca-
pacity and trained on enough data estimates the true Bayesian
aposteriori probability. The scaled likelihood in an HMM state
is given by Eq. 5, where we assume equal prior probability
P (qt = i) for each phonemei = 1, 2...39. The state transition
matrix is fixed with equal probabilities for self and next state
transitions. Viterbi algorithm is applied to decode the phoneme
sequence.

A three layered MLP is used to estimate the phoneme pos-
terior probabilities. The network is trained using the standard
back propagation algorithm with cross entropy error criteria.
The learning rate and stopping criterion are controlled by the
frame classification rate on the cross validation data. In our
system, the MLP consists of1000 hidden neurons, and39
output neurons (with soft max nonlinearity) representing the
phoneme classes. The performance of phoneme recognition is
measured in terms of phoneme accuracy. In the decoding step,
all phonemes are considered equally probable (no language
model). The optimal phoneme insertion penalty that gives
maximum phoneme accuracy on the cross validation data is
used for the test data.



TABLE II
WORD RECOGNITION ACCURACIES(%) FOR DIFFERENT FEATURE EXTRACTION TECHNIQUES ON CLEANOGI TEST DATA AS WELL AS THE AVERAGE

PERFORMANCE FOR THE FOUR NOISE TYPES- ”RESTAURANT”, ”B ABBLE”, ”S UBWAY ” AND ”EXHIBITION HALL ” WITH SNRS 0,5,10,15 AND 20 DB .

SNR (dB) PLP-D-A PLP-9 PLP-SS-9 MVA-9 ETSI-9 FDLP FDLP-NC
clean 95.9 96.4 94.0 95.7 96.5 96.5 95.7

0 25.3 24.0 37.8 47.5 43.4 16.0 44.4
5 47.7 47.0 59.2 67.5 66.3 40.0 69.5
10 67.0 70.3 74.8 80.7 81.3 69.0 83.6
15 78.9 84.4 83.7 88.4 89.5 87.1 90.8
20 86.5 91.4 88.9 92.5 93.3 94.0 94.1

Avg. 61.1 63.4 68.9 75.3 74.8 61.2 76.5

Experiments are performed on TIMIT database containing
speech sampled at16 kHz. The ‘sa’ dialect sentences are
excluded in the experiments. The training data consists of
3000 utterances from375 speakers, cross validation data set
consists of696 utterances from87 speakers and the test data
set consists of1344 utterances from168 speakers. The TIMIT
database, which is hand labeled using61 labels is mapped to
the standard set of39 phonemes [23]. We do not apply any
speaker based normalization on the input features.

For testing the robustness of the proposed features, a noisy
version of the test data is created by adding various types of
noise at different SNRs (similar to Aurora 2 database [24]).
The noise types chosen are the ”Restaurant”, ”Babble”, ”Sub-
way” and ”Exhibition Hall” obtained from [25]. These noises
are added at various SNRs using the FaNT tool [26]. The
generation of the noisy version of the test data is done using
the setup described in [27].

In all the experiments, the system is trained only on the
original TIMIT data, representing clean speech without the
distortions introduced by the additive noise but tested on the
clean TIMIT test set as well as the noisy test set (mismatched
train and test conditions). The results for the proposed noise
compensation technique are compared with those obtained
for several other robust feature extraction techniques namely
PLP features with a9 frame context [23], Advanced ETSI
(noise robust) distributed speech recognition front end [7] with
a 9 frame context, Mean Variance ARMA processing [28]
applied on PLP features (MVA) with a9 frame context and
spectral subtraction, proposed in [29], applied on PLP features
(PLP-SS) with a9 frame context. Among these features, the
Advanced ETSI front end forms the standard feature extrac-
tion for speech recognition in noise [7]. For the modulation
frequency features, we use19 critical bands in the300−8000
Hz range. The FDLP based proposed modulation frequency
features are tested without and with the noise compensation
which are denoted as FDLP and FDLP-NC respectively.

Table I summarizes the results for the phoneme recognition
experiments in TIMIT database with clean test set as well as
the average performance for the four noise types with SNRs
in the 0-20 dB range. Spectral subtraction [29], which is a
speech enhancement technique, improves the performance of
the baseline PLP features for all the noise conditions except
at 0 dB. MVA processing [28], which is feature normalization
method, results in good improvements over the PLP-9 features

in all SNR conditions without much degradation in clean
conditions. Advanced ETSI front end [7] provides the best
performance among the various short term spectral features
considered here.

In the case of the modulation frequency features, the appli-
cation of the proposed noise compensation technique provides
good robustness in all SNR conditions. For all noise types and
SNR conditions, the proposed FDLP-NC features provide an
average relative improvement of about25 % over the baseline
PLP features and about6 % over the ETSI feature extraction
technique.

B. Connected Digit Recognition Task

Experiments are performed with small vocabulary contin-
uous digit recognition task (OGI-Digits database). The vo-
cabulary consists of eleven (0 − 9 digits and ”Oh”) digits
in 28 different pronunciations. We use the Tandem system
which is based on HMM-ANN framework [19]. Features
extracted from speech for every10 ms are used to train an
MLP with 1800 hidden nodes. The MLP estimates posterior
probabilities of29 English phonemes [30]. The training data
consists of the whole Stories database plus the training part of
the Numbers95 database. Around10 % of the data is used for
cross validation. Log and Karhunen Loeve (KL) transforms
are applied on these features. This is done in order to convert
the phoneme posterior probabilities into features appropriate
for a conventional HMM-GMM recognition system [19]. The
HMM based recognizer, trained on the training part of the
OGI-Digits database, is used for classification.

The test data is corrupted with additive noise as explained
in Sec. V-A. Since the Numbers data was collected over
telephone channels, we applied the MIRS filter from ITU
Software Tools Library [31] to the noises before adding them
to Numbers data (similar to the generation of noisy Numbers
data [27]). The HMM-ANN models are trained on clean
condition but tested on clean as well noisy versions of the
test set.

Table II summarizes the results for the connected digit
recognition task using the various extraction techniques de-
scribed in Sec. V-A. We also report the performance with
39 dimensional PLP features (PLP-D-A) on the HMM-GMM
system (without the use of TANDEM setup). It can be seen
that the HMM-ANN framework using Tandem setup generally
results in increased robustness compared to the conventional



HMM-GMM system using the39 dimensional PLP features.
This validates the claims made in [32] regarding the improve-
ments in additive noise for discriminative classifiers.

All the other feature extraction techniques are used along
with the Tandem setup. Among the short term spectral fea-
tures, the MVA processing provides the best robustness perfor-
mance especially in the low SNR conditions. For the modula-
tion frequency features, we use15 critical bands in300−3400
Hz range. Without much degradation in clean conditions, the
proposed noise compensation technique (FDLP-NC) provides
an average relative improvement of35 % over the baseline
PLP-9 features and about5 % over the MVA features. The
application of the proposed noise compensation (FDLP-NC)
gives significant robustness compared to the uncompensated
FDLP features.

VI. CONCLUSIONS

We have proposed a noise compensation technique for mod-
ulation frequency features based on temporal envelope sub-
traction. Subband temporal envelopes, estimated using FDLP,
are processed by both a static and a dynamic compression
and are converted to modulation frequency features. For noise
compensation, an estimate of the temporal envelope of noise
is subtracted from the noisy speech envelope. Although the
proposed technique involves simple operation of envelope
subtraction in time domain (similar to the conventional spectral
subtraction technique), these features provide considerable
improvements over the other noise robust feature extraction
techniques for phoneme and word recognition tasks in various
noise and SNR conditions. In future, we wish to experiment
with real world noisy speech and standard ASR systems that
include model adaptation schemes.
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