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Abstract—In this paper, we present a new noise compen- noisy speech, clean speech and noise respectively.
sation technique for modulation frequency features derived  Conventional feature extraction techniques for ASR estima
from syllable length segments of subband temporal envelopes.the short term {0 — 30 ms) PSD of speech in bark or mel
The subband temporal envelopes are estimated using frequency .
domain linear prediction (FDLP). We propose a technique for scale [6]. Henge, most O_f the recently proposgd noise robust
noise compensation in FDLP where an estimate of the noise feature extraction techniques apply some kind of spectral
envelope is subtracted from the noisy speech envelope. Thesubtraction in which an estimate of the noise PSD is suladact
noise compensated FDLP envelopes are compressed with statifrom the noisy speech PSD (for example [7]).
(logarithmic) and dynamic (adaptive loops) compression and are Alternatively, features for speech recognition can be de-

transformed into modulation spectral features. Experiments ae . d f traiectori f tral ies in the indit
performed on a phoneme recognition task as well as a connected''Ved TOM trajéclories ol Spectral energies in e in

digit recognition task where the test data is corrupted with frequency subbands (for example [8]). Spectral components
variety of noise types at different signal to noise ratios. In of long term amplitude modulations in individual frequency
these experiments with mismatched train and test conditions, the subbands are called modulation spectra. The modulatia spe
proposed features provide considerable improvements compared tral representations have been used in the past for preglicti

to other state of the art noise robust feature extraction techigues . S .
(average relative improvement of 25 % and 35 % over the speech intelligibility in reverberant environments [9]hély

baseline PLP features for phoneme and word recognition tasks are now widely applied in many engineering applications
respectively). like audio coding [10], noise suppression [11], etc. Featur

extraction techniques based on modulation spectrum haee al
been proposed for ASR (for example [12], [13]).

The performance of a typical automatic speech recognition|n our previous work [14], we have shown that a combi-
(ASR) system severely degrades when it encounters spefighion of static and dynamic modulation frequency features
from noisy environments. Such performance degradation ggrform well for telephone channel speech recognitioneHer
mainly caused by mismatch in training and operating Cofhe input speech signal is decomposed into a number of
ditions. A survey of the main approaches that have begftical bands. In each subband, long term envelopes are ex-
pursued in the direction of reducing this mismatch is regmbrt tracted using frequency domain linear prediction (FDLPS][1
in [1]. These approaches can be classified as noise robsstijgg]. FDLP envelopes are compressed using a static and
in features (for example [2]), enhancement of speech (fgrdynamic compression. The static compression stage is a
example [3], [4]) and acoustic model compensation (for examygarithmic operation and dynamic compression stage uses
ple [5]). Although the problem of suppressing the uncotegla adaptive compression loops [17]. The compressed envelopes
additive noise has been widely studied in the past, singdge transformed into modulation spectral components which
channel noisy speech recognition continues to be a chatigngare used as features for a phoneme recognition system.

I. INTRODUCTION

task. _ _ - _ In this paper, we propose a noise compensation technique

When speech signal is corrupted by additive noise, & these modulation frequency features based on temporal
signal that reaches the microphone can be written as envelope subtraction. In each subband, an estimate of the no
zm] = s[m] + n[m], 1) envelope is derived from the input noisy speech. This eséima

is subtracted from the noisy speech envelope before the
wherez[m] is the discrete representation of the input signahpplication of linear prediction in frequency domain. Thire
s[m] represents the clean speech signal which is corruptedise compensated FDLP envelopes are used to derive static
by noise n[m]. Assuming that the speech and noise amnd dynamic modulation frequency features. These features
uncorrelated, we obtain are used for a phoneme recognition task using the hybrid
_ hidden Markov model - artificial neural network (HMM-ANN)
Pxc(m,w) = Ps(m,w) + P (m, o), 2) phoneme recognition system [18] as well as a connected digit
where Px (m,wy), Ps(m,wy) and Py (m,wy) are the short recognition task using the Tandem system [19]. The test data
term power spectral densities (PSD) at frequengyof the for these tasks consists of speech corrupted with variety of
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Fig. 2. Block schematic for the modulation spectrum basedifeaxtraction technique.

envelopes can be extracted using linear prediction in aqu

: ‘ ‘ m '”m"“””” l | domain [15], [16].

100 0 0 o o0 o0 FDLP is an efficient technique for auto regressive (AR)
‘ ‘ o ‘ ‘ ‘ modelling of temporal envelopes of a signal. Typically, au-
| “ | toregressive (AR) models have been used in speech/audio ap-
e s s s ui - pI|cat|ops for rgpresentlng f{he envelo'pe. of the power $p§n:t
© of the signal (time domain linear prediction (TDLP) [21]hi$

paper utilizes AR models for obtaining smoothed, minimum

‘ S ‘ ‘ phase, parametric models for temporal rather than spectral
100 200 300 400 500 600 . .
@ envelopes. The duality between the time and frequency do-

‘ ‘ ‘ ‘ ‘ ‘ mains means that AR modeling can be applied equally well
W to discrete spectral representations of the signal instéad

100 200 Wy 500 600 time domain signal samples. For the FDLP technique, the

‘ ‘ ‘ ‘ ‘ magnitude response of the all pole filter approximates the
J\/\\/\\ Hilbert envelope of the signal (in a manner similar to the

100 200 f_f’r‘;e - 400 500 600 approximation of the power spectrum of the signal using

TDLP [21]).

Fig. 1. Static and dynamic compression of the temporal envelo@® a Fig. 1 shows the AR modelling property of FDLP. It
porticlzn of ?gée]eih)sir?nal, (b) the telmporalhenr\]/elope eﬁm@g the Hilbert shows (a) a portion of speech signal, (b) its Hilbert envelop
transform , (c) the FDLP envelope, which is an all polpraximation to : : :

(b) estimated using FDLP, (d) static compression of the FDLRlepe and computed using the_ Foquer tranSform.teChmque [20] a”O_' (©
(e) dynamic compression of the FDLP envelope. an all pole approximation for the Hilbert Envelope using

FDLP.

| Id noi ¢ diff tsi Lt . tios (SNR) Ill. FEATURE EXTRACTION
real world noises at different signal to noise ratios . . .
In these experiments, the proposed noise compensation t Cr;l'the blo?k S{FheTat;]C .for thi4mpdulr]at|on §p(|a:9trur;1 Eased
nique provides considerable improvements in phoneme/ward. ¢ _extraction technique [14] is shown in Fig. 2. Long

recognition accuracies over other robust feature exmcti;egments of the speech signdh(0 ms) are decomposed

techniques into frequency subbands by windowing the discrete cosine

The rest of the paper is organized as follows. In Sec. H’ansform (DCT). In our experiments, we use a critical band

we describe the FDLP technique for the estimation of thdeecomposmon. For example, if the signal is samples iz,

temporal envelopes using linear prediction in spectral @om We get8000 DCT coefficients for al000 ms window of the
P P g P P signal. These000 coefficients are windowed intd5 critical

The extraction of mpdulatlorj frequency features from thg nds using bark spaced windows in the DCT domain. For
temporal envelopes is explained in Sec. Ill. The propos%él

. . . . . : eriving the spectral autocorrelations (defined as the i€our
noise compensation technique is described in Sec. IV. Exper .
. i ransform of temporal envelope [16]), the subband DCT digna
ments performed with these modulation frequency features

- : Is, converted back to the time domain using inverse discrete
phoneme and word recognition tasks are reported in Sec.§/

In Sec. VI, we conclude with a discussion of the pro Osedo'urier transform (IDFT). The IDFT is performed on the
feature.s ’ PTOPOSELhtire subband DCT foi000 ms signal. The IDFT length

corresponds to original signal lengt®000). The IDFT phase
containing the subband carrier signal is ignored as the FDLP
operation is independent of this component. The magnitude
The Hilbert envelope, which is the magnitude of the analyti©FT component represents a non parametric Hilbert enve-
signal, represents the instantaneous energy of a signalldpe [15]. The Hilbert envelope is transformed using DFT
the time domain. Hilbert envelopes are typically computddto spectral autocorrelations of the subband signal, iwaie
using the Hilbert transform operator in the time domain arsed for linear prediction. The order of the linear predicti
by exploiting the causality of discrete Fourier transformsorresponds tol pole per 10 signal samples. It can be
(DFT) [20]. Alternatively, a parametric model of the Hillber mathematically shown that the application of linear pradic

II. FREQUENCYDOMAIN LINEAR PREDICTION
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Fig. 3. Dynamic compression of the subband FDLP envelopeg asiaptive
compression loops [17]. ‘

in DCT domain apprqximates_the temporal envelope of tt -20* 1

s!gnal [_16]. The steps involved in converting the subbandDC B L I e e

signal into envelope AR model parameters are referred to me (s

FDLP. In our experiments, we use the gain normalized FDLP

envelopes as these are found to be more robust to charﬁi@al5- Lr?g FDLP gnvélﬁri)esbg?r the fifth dcgti;?\:Rba?(; of ﬁleamth
. speec corrupte witl a e noiselat . (a) without noise

noise [22]. Thg whqle set_of subband temporal envglop? pensation (b) with noise compensation.

forms a two dimensional (time-frequency) representatibn o

the input signal energy.

The subband temporal envelopes are then compressed uf/i@ﬂjing modulation spectrum in the— 35 Hz range with a

a stat|<_: compression which is a logarithmic f‘%”c“"” and 18solution of2.5 Hz. This choice of modulation frequencies is
dynamic compression scheme [17]. The dynamic compressi

is realized by an adaptation circuit consisting of five caxnseg&.am?d using phoneme recognition experiments on thes cros
utive nonlinear adantation | h " Fig. 3. Each v?,lldatlon data in TIMIT database [14].
ptation loops as shown in Fig. 3. Each 0

these loops consists of a divider and a lowpass filter witle tim
constants ranging from ms to 1000 ms. The input signal
is divided by the output signal of the lowpass filter in each When speech signal is corrupted by noise, the FDLP en-
adaptation loop. Sudden transitions in the subband emgeloglopes are modified in such a way that their dynamic range
that are fast compared to the time constants of the adaptati® reduced. This is illustrated in Fig. 5.(a), where we plot
loops are amplified linearly at the output, whereas the slowthe subband FDLP envelopes in clean and noisy conditions
changing regions of the input signal are suppressed. In tifdg the same speech utterance. The effect of noise is more
way, changes in the input signal like onsets and offsets gronounced in the valleys of the subband envelopes, where
emphasized in the dynamic compression stage. This is atbe mismatch between clean and noisy speech is significant.
illustrated in Fig. 1, where we show the static (Fig. 1.(d))vhen modulation frequency features are derived from the
and dynamic compression (Fig. 1.(e)) of the FDLP envelopegcompensated FDLP envelopes, the performance of the ASR
The dynamic compression stage is followed by a low pasgstem degrades significantly in noisy conditions.
filter [17]. The proposed noise compensation technique for FDLP is

Since speech recognition system requires speech featgleewn in Fig. 4. A voice activity detector (VAD) operates
sampled at 100 Hz (i.e one feature vector every 10 m®) the input speech signal to indicate the presence of non-
the compressed temporal envelopes are divided 26tbms speech frames. The VAD is implemented using the same
segments with a shift ofil0 ms. The temporal envelopestechnique proposed in [7]. The VAD output is a flag indicating
from the two compression streams are then converted ifte speech/non-speech decision for every short term frdme o
modulation spectral components using DCT, correspondinggpeech (with a length df5 ms and a shift ofl0 ms).
the static and the dynamic modulation spectrum. We luse  As mentioned before (Sec. Ill), long segments of the input
modulation frequency components from each of these streasiseech signal are transformed to DCT domain where a critical

Amplitude (dB)

IV. TEMPORAL ENVELOPE SUBTRACTION



TABLE |
PHONEME RECOGNITIONACCURACIES (%) FOR DIFFERENT FEATURE EXTRACTION TECHNIQUES ON CLEANIMIT TEST DATA AS WELL AS THE
AVERAGE PERFORMANCE FOR THE FOUR NOISE TYPES'RESTAURANT”, "B ABBLE”, "SUBWAY” AND "EXHIBITION HALL” WITH SNRs0,5,10,15 AND

20 DB .
SNR (dB) | PLP-9 | PLP-SS-9| MVA-9 | ETSI-9 | FDLP | FDLP-NC
clean 66.8 60.7 63.8 65.7 67.6 65.4
0 14.6 11.0 24.3 28.2 24.6 30.1
5 20.6 25.1 32.8 37.3 33.3 39.9
10 28.9 39.1 41.2 46.5 42.7 50.0
15 38.7 49.6 48.3 53.8 52.0 57.9
20 48.9 56.1 53.7 58.9 58.6 62.4
Avg. 30.3 36.2 40.1 44.9 42.2 48.1

band sized windowing is applied. The subband Hilbert emompensation slightly reduces the information in valleys o
velopes are obtained as the magnitude IDFT of the DCT signellean speech signal (as illustrated by the drop in recagniti
We apply short term envelope subtraction on these subbgretformance in clean conditions), it significantly redutes
Hilbert envelopes for noise compensation. This is achiémed mismatch between FDLP envelopes extracted from clean and
two steps. In the first step, we window the Hilbert envelopew®isy speech. In this view, the proposed approach opetkies |
into short term segments (of leng®# ms with a shift of10 an envelope normalization procedure as opposed to a noise
ms). The next step is to subtract an estimate of the short teremoval technique.

noise envelope from these segments.

Since the noise component is assumed to be additive in V. EXPERIMENTS AND RESULTS
signal domain (Eg. 1), we can write A. Phoneme Recognition Task
X k] = S[k] + P[k], () The phoneme recognition system is based on the Hidden

Markov Model - Artificial Neural Network (HMM-ANN)
where X [k], S[k] and P[k] are thek' DCT coefficient of paradigm [18]. The multi layer perceptron (MLP) estimates t
noisy speech, clean speech and noise respectively. BWVirEstterior probability of phonemes given the acoustic avide
of the orthogonality property of the DCT matrix, the speec (@ = i|z), whereg, denotes the phoneme index at frame
and noise continue to be uncorrelated in the DCT domaip,.xt denotes the feature vector taken with a window of
Further, the application of magnitude DFT gives certain frames. The relation between the posterior prdibabi
Ex(m, bs) = Es(m, b)) + Ex(m, by), 4) ]ng)lltes_rﬂfet,) and the likelihoodP(x:|g: = i) is given by the
where Ex (m,b;), Eg(m_,bi) and En(m,b;) are th_e short plzdlg =) Pla = ilz)
term non parametric Hilbert envelopes of the noisy speech, = —=. (5)
clean speech and noise respectively for the subbanég. 4 p(ze) Plgw = 1)
shows that the effect of noise can be alleviated if an eséimat It is shown in [18] that the neural network with sufficient ca-
of En(m,b;) is subtracted from the short term noisy speegbacity and trained on enough data estimates the true Bayesia
envelopeEx (m, b;). aposteriori probability. The scaled likelihood in an HMMs
An estimate of the short term noise envelope is obtainél given by Eq. 5, where we assume equal prior probability
by averaging the envelope segments in the non-speech regi{g;: = ¢) for each phonemé= 1, 2...39. The state transition
(from the beginning and end of speech utterance). This estiatrix is fixed with equal probabilities for self and nexttsta
mate is subtracted from the short term envelopes of spedrmsitions. Viterbi algorithm is applied to decode the pdime
similar to the conventional spectral subtraction techeiftj. sequence.
The noise compensated short term envelopes are synthesizel three layered MLP is used to estimate the phoneme pos-
using overlap-add to obtain the long term subband envelopesior probabilities. The network is trained using the gtz
These are converted back to subband DCT domain and usagk propagation algorithm with cross entropy error dater
for FDLP. Static and dynamic modulation frequency featur&he learning rate and stopping criterion are controlledhsy t
are derived from the noise compensated FDLP envelopesfi@sne classification rate on the cross validation data. In ou
described in Sec. IlI. system, the MLP consists df000 hidden neurons, and9
Fig. 5.(b) provides an illustration of the effect of this s@i output neurons (with soft max nonlinearity) representing t
compensation technique on the subband FDLP envelopes gboneme classes. The performance of phoneme recognition is
clean and noisy speech. The noise compensation procedueasured in terms of phoneme accuracy. In the decoding step,
modifies the clean envelopes in such a way that the vallegf phonemes are considered equally probable (no language
of trajectory are deemphasized. This is due to the fact wharodel). The optimal phoneme insertion penalty that gives
the compensated value reduces below zero, we employ thaximum phoneme accuracy on the cross validation data is
corresponding magnitude value. Although this method ofed for the test data.




TABLE Il
WORD RECOGNITION ACCURACIES(%) FOR DIFFERENT FEATURE EXTRACTION TECHNIQUES ON CLEAKDGI TEST DATA AS WELL AS THE AVERAGE
PERFORMANCE FOR THE FOUR NOISE TYPES"RESTAURANT’, "B ABBLE”, "SUBWAY” AND "EXHIBITION HALL” wiTH SNRs0,5,10,15 AND 20 DB .

SNR (dB) | PLP-D-A | PLP-9 | PLP-SS-9| MVA-9 | ETSI-9 | FDLP | FDLP-NC
clean 95.9 96.4 94.0 95.7 96.5 96.5 95.7
0 25.3 24.0 37.8 47.5 43.4 16.0 44.4
5 47.7 47.0 59.2 67.5 66.3 40.0 69.5
10 67.0 70.3 74.8 80.7 81.3 69.0 83.6
15 78.9 84.4 83.7 88.4 89.5 87.1 90.8
20 86.5 91.4 88.9 92.5 93.3 94.0 94.1
Avg. 61.1 63.4 68.9 75.3 74.8 61.2 76.5

Experiments are performed on TIMIT database containinig all SNR conditions without much degradation in clean
speech sampled at6 kHz. The ‘sa’ dialect sentences areconditions. Advanced ETSI front end [7] provides the best
excluded in the experiments. The training data consists pérformance among the various short term spectral features
3000 utterances fron875 speakers, cross validation data setonsidered here.
consists 0f696 utterances fron87 speakers and the test data In the case of the modulation frequency features, the appli-
set consists 0f344 utterances from68 speakers. The TIMIT cation of the proposed noise compensation technique msvid
database, which is hand labeled us@iglabels is mapped to good robustness in all SNR conditions. For all noise typek an
the standard set df9 phonemes [23]. We do not apply anySNR conditions, the proposed FDLP-NC features provide an
speaker based normalization on the input features. average relative improvement of ab@it % over the baseline

For testing the robustness of the proposed features, a ndidyP features and abo6t% over the ETSI feature extraction
version of the test data is created by adding various typeste€hnique.
noise at different SNRs (similar to Aurora 2 database [24]).

The noise types chosen are the "Restaurant”, "Babble”, 2SuB- Connected Digit Recognition Task

way” and "Exhibition Hall” obtained from [25]. These noises Experiments are performed with small vocabulary contin-
are added at various SNRs using the FaNT tool [26]. Th@us digit recognition task (OGI-Digits database). The vo-
generation of the noisy version of the test data is done usiggbulary consists of eleverd (- 9 digits and "Oh”) digits
the setup described in [27]. in 28 different pronunciations. We use the Tandem system

In all the experiments, the system is trained only on thehich is based on HMM-ANN framework [19]. Features
original TIMIT data, representing clean speech without thextracted from speech for eveiy) ms are used to train an
distortions introduced by the additive noise but testedtmn tMLP with 1800 hidden nodes. The MLP estimates posterior
clean TIMIT test set as well as the noisy test set (mismatchprbbabilities of29 English phonemes [30]. The training data
train and test conditions). The results for the proposedenoiconsists of the whole Stories database plus the trainintgopar
compensation technique are compared with those obtairthd Numbers95 database. Arouttl% of the data is used for
for several other robust feature extraction techniqueset\amcross validation. Log and Karhunen Loeve (KL) transforms
PLP features with & frame context [23], Advanced ETSIare applied on these features. This is done in order to cbnver
(noise robust) distributed speech recognition front efjahvjth  the phoneme posterior probabilities into features apjatgor
a 9 frame context, Mean Variance ARMA processing [28]or a conventional HMM-GMM recognition system [19]. The
applied on PLP features (MVA) with & frame context and HMM based recognizer, trained on the training part of the
spectral subtraction, proposed in [29], applied on PLRufest OGI-Digits database, is used for classification.

(PLP-SS) with & frame context. Among these features, the The test data is corrupted with additive noise as explained
Advanced ETSI front end forms the standard feature extrap- Sec. V-A. Since the Numbers data was collected over
tion for speech recognition in noise [7]. For the modulatiotelephone channels, we applied the MIRS filter from ITU

frequency features, we usé critical bands in the800 —8000 Software Tools Library [31] to the noises before adding them
Hz range. The FDLP based proposed modulation frequenegyNumbers data (similar to the generation of noisy Numbers
features are tested without and with the noise compensatdsta [27]). The HMM-ANN models are trained on clean

which are denoted as FDLP and FDLP-NC respectively. condition but tested on clean as well noisy versions of the

Table | summarizes the results for the phoneme recognititest set.
experiments in TIMIT database with clean test set as well asTable 1l summarizes the results for the connected digit
the average performance for the four noise types with SNIRscognition task using the various extraction techniques d
in the 0-20 dB range. Spectral subtraction [29], which is &cribed in Sec. V-A. We also report the performance with
speech enhancement technique, improves the performanc8®tlimensional PLP features (PLP-D-A) on the HMM-GMM
the baseline PLP features for all the noise conditions excegystem (without the use of TANDEM setup). It can be seen
at0 dB. MVA processing [28], which is feature normalizatiorthat the HMM-ANN framework using Tandem setup generally
method, results in good improvements over the PLP-9 festuresults in increased robustness compared to the convahtion
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