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Abstract

The problem of speaker and channel adaptation in deep neural
network (DNN) based automatic speech recognition (ASR) sys-
tems is of substantial interest in advancing the performance of
these systems. Recently, the speaker identity vectors (i-vectors)
have shown improvements for ASR systems in matched condi-
tions. In this paper, we propose the application of the general
factor analysis framework for noisy speech recognition tasks.
Several methods for deriving speaker and channel factors are
explored including joint factor analysis (JFA) and i-vectors de-
rived from DNN posteriors instead of the traditional Universal
background model (UBM) approach. We also experiment with
the late fusion of i-vector features with bottleneck (BN) fea-
tures obtained from a previously trained convolutional neural
network (CNN) system. The ASR experiments are performed
on the Aspire challenge test data which contains noisy far-field
speech while the acoustic models are trained with conversa-
tional telephone speech (CTS) data from the Fisher corpus. In
these experiments, we show that the factor analysis based meth-
ods provide significant improvements in the word error rate
(relative improvements of about11% compared to the baseline
DNN system trained with speaker adapted features).
Index Terms: Factor analysis, Speaker and Channel Adapta-
tion, Deep Neural Networks, Automatic Speech Recognition

1. Introduction
Deep neural networks (DNNs) have shown promising perfor-
mance for tasks like automatic speech recognition (ASR) [1, 2]
and in the recent years have increasingly become the defacto
method for acoustic modeling replacing the Gaussian mixture
models (GMMs). In the context of GMM based ASR systems,
the problem of speaker adaptation has been widely studied and
transformation techniques like maximum likelihood linear re-
gression (MLLR) have been successfully applied. However, for
discriminative models like DNNs, speaker and channel adapta-
tion from a small amount of data is not straightforward. While
adaptation of a subset of parameters have been tried in the past
[3], these methods require some form of regularization to avoid
issues of overfitting [4].

For speaker and language recognition, the concept of iden-
tity vectors (i-vectors) is widely used for summarizing the statis-
tics from a single recording with a fixed dimensional vector
[5, 6]. Recently, the i-vectors have been explored for ASR tasks
by concatenating the i-vectors along with acoustic features for
training DNN models [7, 8, 9]. This approach attempts to learn
the weights of the DNN in a manner which reduces the speaker
variability in phoneme classification by exploiting the speaker
characteristics embedded in the i-vectors. In other words, the
speaker i-vector features represent the nuisance directions for

the phoneme classification task and the network is trained to
ignore these variabilities. In another related work [10], the au-
thors argue that i-vector features may encompass much more
than speaker specific information.

In this paper, we propose to use the i-vector approach for
ASR to address channel and noise related variabilities in the
speech signal in addition to the speaker variability. Joint fac-
tor analysis (JFA) [11] provides a decomposition scheme which
separates the projection model into separate speaker and chan-
nel/session sub-spaces. Using this procedure, we derive speaker
and channel factors which can be used with acoustic features
for DNN training. To our knowledge, this is the first work us-
ing JFA framework with DNN based posteriors instead of the
GMM-UBM approach [12, 13]. In this case, the mixture com-
ponents correspond to phonetic classes and the GMM based
posteriors used in the conventional i-vector estimation are re-
placed with phonetic posteriors.

The other scenario of interest here is the use of the i-vectors
along with a previously trained DNN/CNN acoustic model. The
goal here is to improve ASR performance with minimal retrain-
ing. We develop a scheme of using hidden layer activation
outputs (BN features) from the trained DNN model with the
i-vectors to train a shallow neural network.

The ASR experiments are performed on the Aspire chal-
lenge data [14] which consists of a scenario of mis-matched
acoustic training and testing conditions. The acoustic models
are trained on600 hours of conversational telephone speech
(CTS) from the Fisher corpus. The test data is collected in
far-field microphone conditions and it includes significant room
noise and reverberation. Our experiments in this task show that
factor analysis features provide significant improvements in the
WER compared to baseline speaker adapted acoustic features.

The rest of the paper is organized as follows. Sec. 2 de-
scribes the general factor analysis framework and highlights the
different schemes used in this paper The experimental setup and
the training procedure are discussed in Sec. 3. The results for
various ASR evaluations are reported in Sec. 4 followed by a
brief discussion. Sec. 5 provides a summary of the techniques
proposed in this work.

2. Factor Analysis Framework
The techniques outlined here are derived from the previous
work on joint factor analysis (JFA) and i-vectors [5, 11, 15].
We follow the notations used in [5]. The training data from
all the speakers is used to train a GMM with model parameters
λ = {πc, µc ,Σc} whereπc, µc andΣc denote the mixture
component weights, mean vectors and covariance matrices re-
spectively forc = 1, .., C mixture components. Here,µc is
a vector of dimensionF andΣc is of assumed to be diagonal
matrix of dimensionF × F .



2.1. I-vector Representations

Let M0 denote the UBM supervector which is the concatena-
tion of µc for c = 1, .., C and is of dimension ofCF × 1. Let
Σ denote the block diagonal matrix of sizeCF × CF whose
diagonal blocks areΣc. LetX (s) = {xs

i , i = 1 , ..., H (s)} de-
note the low-level feature sequence for input recordings where
i denotes the frame index. HereH(s) denotes the number of
frames in the recording. Eachxs

i is of dimensionF × 1.
Let M(s) denote the recording supervector which is the

concatenation of speaker adapted GMM meansµc(s) for c =
1, .., C for the speakers. Then, the i-vector model is,

M(s) = M0 + V y(s) (1)

whereV denotes the total variability matrix of dimensionCF×
M andy(s) denotes the i-vector of dimensionM . The i-vector
is assumed to be distributed asN (0, I).

In order to estimate the i-vectors, the iterative EM algo-
rithm is used. We begin with random initialization for the total
variability matrixV . Let pλ(c|xs

i ) denote the alignment prob-
ability of assigning the feature vectorxs

i to mixture component
c. The sufficient statistics are then computed as,

Nc(s) =

H(s)
X

i=1

pλ(c|xs
i )

SX,c(s) =

H(s)
X

i=1

pλ(c|xs
i )(x

s
i − µc)

(2)

Let N(s) denote theCF ×CF block diagonal matrix with di-
agonal blocksN1(s)I , N2(s)I ,..,NC(s)I whereI is theF×F

identity matrix. LetSX(s) denote theCF × 1 vector obtained
by splicingSX,1(s),..,SX,C(s).

It can be easily shown [5] that the posterior distribution of
the i-vectorpλ(y(s)|X (s)) is Gaussian with covariancel−1(s)
and meanl−1(s)V ∗Σ−1SX(s), where

l(s) = I + V
∗Σ−1

N (s)V (3)

The optimal estimate for the i-vectory(s) obtained as
argmaxy

ˆ

pλ(y(s)|X (s))
˜

is given by the mean of the pos-
terior distribution.

For re-estimating theV matrix, the maximization of the
expected value of the log-likelihood function (EM algorithm),
gives the following relation [5],

S
X

s=1

N (s) V E
ˆ

y(s)y∗(s)
˜

=
S

X

s=1

SX(s)E
ˆ

y
∗(s)

˜

(4)

whereE[.] denotes the posterior expectation operator. The so-
lution for Eq. (4) can be computed for each row ofV . Thus,
the i-vector estimation is performed by iterating between the
estimation of posterior distribution and the update of the total
variability matrix (Eq. (4)).

2.2. Joint Factor Analysis

The JFA approach attempts to capture the additional channel
factors that represent intraspeaker variability [11]. These fac-
tors represent the variability in the recording environment for
different segments from the same speaker. For this case, we as-
sume that for speakers, there areq = 1, .., Q(s) sessions, each
with Hq(s) frames. The JFA model is

M(s) = M0 + V y(s) + Dz(s),

Mq(s) = M(s) + Uxq(s),
(5)

whereV denotes the speaker variability matrix of sizeCF×M ,
U denotes the channel/session variability matrix of sizeCF ×
N andD is a diagonal matrix of sizeCF × CF capturing the
residual space. Here,M(s) andMq(s) represent supervectors
for the entire data from speakers and for the sessionq from
speakers respectively. The factorsy(s), xq(s) andz(s) are
speaker factors, channel factors and residual factors of dimen-
sionM , N andCF respectively. The sub-spaceV V ∗ captures
the interspeaker variability while the sub-spaceUU ∗ captures
the intraspeaker channel variability.

In order to estimate the parameters in the JFA model,
let Y (s) denote the collection of factors for each speakers.
Y (s) = [x∗

1(s) x∗

2(s) ... x∗

Q(s)(s) y∗(s) z∗(s)]∗. Also, let

V =
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(6)

whereV is of dimension[Q(s)CF × (Q(s)N + M + CF )].
If we also haveM(s) as the concatenation of allMq(s) for
q = 1, .., Q(s) andM0 as the concatenation of the same vector
M0 Q(s) times, then we can rewrite Eq. (5) as

M(s) = M0 + V Y (s) (7)

which is similar to Eq. (1). Thus, the parameters of the JFA
model can be computed in a very similar fashion to the EM for-
mulation described in Sec. 2.1. In the ASR experiments, we
group together speech segments from a speaker so as to form
at least5 sessions per speaker. In our experiments, we use
M = 150 andN = 150. For each speech utterance, these fea-
tures (one feature per speaker) are replicated to match the frame
length of the acoustic features for the utterance and appended at
the input of the DNN/CNN acoustic model.

2.3. DNN i-vectors

Instead of using a GMM-UBM based computation of i-vectors,
we can also use DNN context dependent state (senone) pos-
teriors to generate the sufficient statistics used in the i-vector
computation [12, 13]. The GMM mixture components will be
replaced with the senone classes present at the output of the
DNN. Specifically,pλ(c|xs

i ) used in Eq. (2) is replaced with
the DNN posterior probability estimate of the senonec given
the input acoustic feature vectorxs

i and the number of senones
is the parameterC. The other parameters of the UBM model
λ = {πc, µc ,Σc} are computed as
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Using these estimates for the UBM parameters, the rest of the
i-vector formulation discussed in Sec. 2.1 is followed to derive
the DNN i-vectors. For the DNN i-vectors, we use a reduced
set of senones (1088 obtained by merging the10000 triphone
states using a decision tree).



3. Experimental setup
3.1. ASR System

The ASR system is similar to the setup described in [16]. The
first step in the acoustic modeling involved the training of tradi-
tional HMM-GMM based acoustic models. The GMM mod-
els are trained on13 dimensional PLP features estimated in
25 ms windows of speech. The cepstral features from9 con-
secutive frames are then spliced after speaker based cepstral
mean-variance and vocal tract length normalizations (VTLN).
A LDA transform is applied to reduce the final feature dimen-
sionality to 40. The ML training of the GMM models is also
interleaved with the estimation of a global semi-tied covariance
(STC) transform. Speaker-space feature maximum likelihood
regression (FMLLR) is finally applied to train speaker adapted
models. The training is done with900 hours of speech from
the Fisher corpus [17]. The Aspire test data [14] contains30
recordings each of duration10 minutes long amounting to5
hours of test data.

3.1.1. Deep Neural Network Models

The DNN models are fully connected multilayer perceptrons
with several non-linear hidden layers that are discriminatively
trained to estimate posterior probabilities of context-dependent
states. Using the standard error back-propagation and cross-
entropy objective function, the DNNs are trained on speaker
adapted FMLLR features using alignments produced from the
HMM-GMM acoustic model described earlier. The DNNs are
pretrained by growing them layer-wise to7 hidden layers. Ex-
cept for the penultimate bottleneck (BN) layer with512 units all
the other hidden layers have 2048 units. In all the experiments
reported in this paper, the DNNs are trained on600 hours of
audio data from the Fisher corpus.

3.1.2. Convolutional Neural Network Models

Convolutional neural networks (CNN) [18] use additional fea-
ture extracting layers based on2−D convolution before a DNN.
We train CNN models on 40 dimensional log-mel spectra aug-
mented with∆ and∆∆s. Each frame of speech is also ap-
pended temporally with a fixed set of11 frames. All of the128
nodes in the first feature extracting layer are attached with9×9
filters while the second feature extracting layer with256 nodes
has a similar set of4 × 3 filters. The non-linear outputs from
the second feature extracting layer are then passed onto the fol-
lowing DNN layers.

3.1.3. Language models

The ASR system uses a 4-gram model containing 18M n-grams
derived from the entire Fisher training corpus.

3.1.4. Late-fusion Acoustic Models

These networks are much shallower networks with4 hidden
layers with1024 units each. The input to these networks are
512 dimensional BN features from DNN/CNN models, con-
catenated with i-vector features.

3.2. Denoising

The training and testing sets of the Aspire task [14] are highly
mismatched. While the training data is derived from conversa-
tional telephone speech (CTS), the test data is recorded in noisy
conditions using a far-field microphone. Thus, the test data con-

Table 1: Performance in terms of word error rate (WER %) for
the baseline ASR system trained with600 hours of CTS data
and tested on the Aspire challenge data. The fmllr−v2 stands
for two pass fmllr using transcripts from first pass fmllr.

System WER (%)
Logmel feat. 51.2

vtln+lda+fmllr 47.6
vtln+lda+fmllr + Denoising 43.7

vtln+lda+fmllr−v2 + Denoising (baseline) 43.2

Table 2: Performance in terms of word error rate (WER %) for
different variants of plp based i-vectors.

System WER (%)
Baseline 43.2

+ ivec-plpfmllr-unorm 41.0
+ ivec-plp2048 41.3
+ ivec-plp4096 40.8

+ ivec-plp1024-cmvn 40.1
+ ivec-plp1024-vtln-lda-fmllr 39.5

+ ivec-unorm-plp1024-vtln-lda-fmllr 38.9

tains significant amounts of noise and reverberation artifacts. In
order to decrease the effects of these two types of distortions, we
first suppress the additive noise using a variation of the MMSE
algorithm [19]. Then, we subtract the late reverberation compo-
nent of the signal employing the MSLP (”long-term Multi-Step
Linear Prediction”) algorithm [20]. The denoising process is
applied only on the test set, while the audio of the training set is
left unprocessed.

4. Results
4.1. Baseline System

We explore the usefulness of speaker specific (VTLN-LDA-
FMLLR) transforms for the Aspire data as well as the benefits
of denoising the test data. These results are reported in Table 1.
In these experiments the DNN input layer is of dimension360
(9 frame of40 dimensional features). As shown here, the appli-
cation of speaker transforms provides significant improvements
over the log Mel features. The denoising procedure described
in Sec. 3 gives further improvements of about9 % relative com-
pared to the speaker specific features. The last row of this table
(FMLLR-v2) corresponds to scenario of retraining the FMLLR
transform using the lattice generated from the first pass speaker
specific FMLLR features with denoising. This system will be
used as the baseline for investigating the usefulness of factor
analysis features.

4.2. I-vector variants

The next set of experiments compare the different variants
of GMM-UBM based i-vectors (Sec. 2.1). These results re-
ported in Table 2 compare the performance of i-vectors ob-
tained from different number of Gaussian mixture components
(namely 1024,2048 and 4096) which were trained using39 di-
mensional PLP cepstral coefficients with delta and accelera-
tion coefficients. The i-vectors for all these experiments are
of M = 150 dimensions, which would make the DNN input
layer of 510 dimensions. As seen here, the i-vector features
improve the baseline ASR performance for all the cases con-
sidered here. The results suggest that increasing the number
of Gaussians has a relatively minor effect on performance of



Table 3: Performance in terms of word error rate (WER %) for
various factor analysis features.

System WER (%)
Baseline 43.2

+ ivec-plp-fmllr-unorm 38.9
+ ivec-dnn-fmllr-unorm 38.8
+ jfa-dnn-fmllr-unorm 38.6

Table 4: Performance in terms of word error rate (WER %) for
various late-fusion experiments

System WER (%)
Baseline DNN 43.2

DNN-BN + ivec-plp1024 42.7
CNN-logmel-vtln 44.0

CNN-logmel-vtln-stc-fmllr 43.0
CNN-logmel-vtln-stc-fmllr-BN + ivec-fdlp1024 40.4

the system. Although the i-vectors with 4096 Gaussian mix-
ture components is slightly better than those with 1024 compo-
nents, the computational burden is significantly high in train-
ing the i-vector model as well as the extraction of these fea-
tures for the test data. The last two rows of Table 2 report
the performance of transformations applied to the PLP coef-
ficients before GMM-UBM and i-vector training. The use of
variance normalized (CVN) features improve the performance
by about0.9 % in absolute WER. We observe additional gains
by using speaker transformed features (VTLN-LDA-FMLLR)
even in the i-vector training process. The speaker transformed
features used in i-vector extraction provide absolute WER im-
provements of about1.5 % over the i-vector based system with-
out any normalization. Further, the unit length normalization
[21] of i-vectors also provides additional improvements in the
ASR performance and provides a relative improvement of10 %
over the baseline system.

4.3. General Factor Analysis Features

The experiments reported in Table 3 compare the performance
of i-vector features with other factor analysis features namely
the JFA method (Sec. 2.2) and the DNN i-vector method
(Sec. 2.3). The DNN i-vectors provide similar results compared
to GMM-UBM based i-vectors. The JFA method of model-
ing intra-speaker variability provides a relatively moderate im-
provement in the ASR performance. The overall improvement
of the JFA framework with the DNN based statistics is about
11% relative to the baseline.

4.4. Late Fusion

The final set of experiments reported in Table 4 explore the per-
formance of late-fusion approaches where a previously trained
DNN without i-vectors is used to generate hidden layer acti-
vations. The BN activations are used in conjunction with i-
vectors to train a shallow NN. The results indicate that while
the early fusion approaches are more beneficial (Table 2), the
late fusion techniques improve the performance of a previously
trained DNN with a relatively minor computational effort in re-
training.

The late fusion approaches can also be used to improve the
adaptation performance of convolutional neural network (CNN)
based ASR systems, as shown in Table 4. Here, a baseline

CNN system is improved by feature adaptation using dynamic
noise adaptation with clean Detection (DNA-CD) [22] followed
by FMLLR in Mel-semi-tied-covariance (Mel-STC) space [23].
As described in [23], the (speaker-dependent) FMLLR trans-
formationF estimated in the STC space must be multiplied by
inverse of the STC matrix to reconstruct adapted log Mel fea-
tures of each frame. This strategy allows one to utilize a diag-
onal covariance GMM as a basis for adapting the highly corre-
lated log Mel features in an unsupervised manner, while main-
taining the CNN’s ability to exploit correlation patterns seen
during training. However, this adaptation approach is single-
frame-based, has limited adaptation capacity. The adapted CNN
system is significantly outperformed by the corresponding late-
fused system, which incorporates100 dimensional i-vectors de-
rived from frequency domain linear prediction (FDLP) features
[24]. The i-vectors express a higher dimensional synopsis of the
acoustic mismatch and provide relevant summary of the entire
recording. Thus, the inclusion of i-vectors to the feature adapted
CNN acoustic model is highly effective, even when they are
fused after several layers of non-linearities.

4.5. Discussion

The various ASR experiments reported in this section indicate
that factor analysis features provide useful information for ASR
tasks. The approach of using all the segments from the same
speaker to generate a single i-vector (similar to the one proposed
in [7]) is slightly inferior to the approach using session level fac-
tor analysis features (JFA). The application of speaker normal-
ization transforms like VTLN and FMLLR to acoustic features
are beneficial even for the i-vector extraction. The i-vectors
based on these transformed features improve the ASR perfor-
mance and further underline the questions addressed in [10].
Specifically, the i-vectors based on these transformed features
have low speaker specific information but however improve the
ASR performance. This would mean that the i-vectors normal-
ize other variabilities in the speech signal beyond speaker.

The use of DNN based JFA features improves the ASR per-
formance compared to GMM-UBM based i-vectors. The use
of i-vectors in late fusion scenario enables the application in
CNN based ASR systems and it improves the performance of a
previously trained ASR system with minimal retraining effort.
The next logical step in this pipeline is to combine all individual
approaches - training DNN i-vectors on speaker transformed di-
verse acoustic frontend. Furthermore, there is a need for more
scientific and experimentation analysis to explore the informa-
tion conveyed by i-vectors for DNN acoustic models.

5. Summary
In this paper, we have analyzed the use of factor analysis fea-
tures for ASR tasks in noisy speech. The various factor analysis
schemes explored in this work include - conventional i-vectors,
joint factor analysis and DNN based i-vectors. Several ASR ex-
periments using these features indicate that the factor analysis
features improves the performance of ASR systems by a con-
siderable margin.
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