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ABSTRACT

In this paper, we present a speech activity detection (SAD) tech-

nique for speaker verification in noisy environments. The proposed

SAD is based on phoneme posteriors derived from a multi-layer

perceptron (MLP). The MLP is trained using modulation spectral

features, where long temporal segments of the speech signal are

analyzed in critical bands. In each sub-band, temporal envelopes

are derived using the autoregressive modelling technique called fre-

quency domain linear prediction (FDLP). The robustness of the

sub-band envelopes is achieved by a minimum mean square enve-

lope estimation technique. We also experiment with MFCC features

processed with cepstral mean subtraction. The speech features are

input to the trained MLP to estimate phoneme posterior probabili-

ties. For SAD, all the speech phoneme probabilities are merged to

one speech class to derive speech/non-speech decisions. The pro-

posed SAD is applied for a speaker verification task using noisy

versions of NIST 2008 speaker recognition evaluation (SRE) data,

where the proposed SAD provides significant improvements (rela-

tive equal error rate (EER) improvement of about 9 % in additive

noise and about 19 % in reverberant conditions). Furthermore, the

improvements are consistent for the two different front-ends (FDLP

and MFCC) considered here.

Index Terms— Frequency Domain Linear Prediction (FDLP),

Speech Activity Detection, Speaker Verification.

1. INTRODUCTION

In most speech processing systems, the first step in dealing with a

speech signal is the reliable detection of speech activity. Speech

activity detection (SAD) has been studied for many decades now

and various algorithms have been developed for speech recogni-

tion, speech coding, speaker verification and other applications.

In the case of speaker verification, the main challenge is to ob-

tain speech segments with low amounts of false alarms for signals

embedded in noise and reverberation. In low signal-to-noise ratio

(SNR) and non-stationary environments, conventional approaches

often fail and speaker recognition performances can degrade signif-

icantly.

Several approaches have been proposed in the past for SAD.

Earlier methods like [1] use parameters from waveform like time
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domain linear prediction coefficients, zero crossing rate etc. Sta-

tistical approaches to SAD have also been explored in the past [2],

where a likelihood ratio test is applied on the noise to signal ratio.

The most common SAD is the adaptive, energy-based speech de-

tector [3]. Other approaches like estimation of noise energy from

the speech signal and using a threshold on the frame level mel spec-

trum SNR are used in speech recognition [4]. In a more recent

approach, multi-scale spectro-temporal modulations which emulate

human auditory processing have been also investigated for SAD [5].

In this paper, we address the problem of robust SAD using

multi-layer perceptrons (MLPs). MLPs are widely used in auto-

matic phoneme recognition tasks where they are used to estimate

phoneme posterior probabilities [6]. For SAD, the speech phoneme

posteriors are merged to single speech class. This gives a two

class posterior probability vector with speech/non-speech probabili-

ties. These probabilities are hard thresholded to speech/non-speech

decisions and a Viterbi decoder is used to smooth the decisions.

A minimum duration of 7 consecutive frames is imposed on the

speech/non-speech classes.

We propose to train MLPs using robust feature extraction

schemes based on frequency domain linear prediction (FDLP) [7].

In this process, the speech signal is analyzed in critical bands and

a minimum-mean square error (MMSE) estimation of the sub-band

Hilbert envelopes is performed [9]. The robust sub-band envelopes

are used for deriving using autoregressive models (FDLP) [8]. The

FDLP envelopes are compressed using static and dynamic compres-

sion and are converted to modulation frequency components [7]. In

order to test the performance of standard front-ends on the MLP

SAD system, we also experiment with MFCC features processed

with cepstral mean subtraction.

The proposed SAD technique is evaluated on noisy and rever-

berated versions of a subset of the NIST 2008 speaker recognition

evaluation (SRE) dataset. In these experiments, the MLP-based

SAD results in robust detection of speech segments compared to

other SAD techniques. Using various SAD techniques, we also

perform speaker verification experiments using a Gaussian mix-

ture model-universal background model (GMM-UBM) with the i-

vector Gaussian probabilistic linear discriminant analysis (PLDA)

system [10]. In these experiments, the MLP based SAD system

(with either FDLP or MFCC features) outperforms the other ap-

proaches in terms of both SAD error as well as the resulting speaker

recognition equal error rate (EER).

The rest of the paper is organized as follows. In Section 2, we

describe the proposed modulation feature extraction. The MLP-

based SAD system is described is Section 3. Experiments per-

formed with the SAD system are reported in Section 4. Finally,

we conclude in Section 5.
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Figure 1: Block schematic for the modulation spectrum based feature extraction technique.

2. FEATURE EXTRACTION

2.1. Extraction of non-parametric Hilbert envelope

The block schematic for the modulation spectrum based feature ex-

traction technique is shown in Fig. 1. Long segments of the speech

signal are decomposed into bark-spaced sub-bands by windowing

the discrete cosine transform (DCT). For deriving the sub-band

Hilbert envelope [8], the squared magnitude of the discrete Fourier

transform (DFT) is used. The MMSE technique is applied to esti-

mate the clean envelope from the noisy speech envelope [9].

2.2. MMSE Hilbert envelope estimation

When speech signal is corrupted by uncorrelated additive noise, the

signal that reaches the microphone can be written as

x[m] = s[m] + n[m], (1)

where x[m] is the discrete representation of the input signal, s[m]
represents the clean speech signal which is corrupted by noise n[m].
By virtue of the orthogonality property of the DCT matrix, the

speech and noise signals continue to be additive and uncorrelated

in the DCT domain. Further, the application of DFT on the zero

padded DCT signal [8] gives

AX(m, i) = AS(m, i) + AN(m, i), (2)

where AX(m, i), AS(m, i) and AN(m, i) are the discrete time an-

alytic signal representations of the noisy speech, clean speech and

noise respectively for the sub-band i. The MMSE estimator [9] can

be used for the estimation of the magnitude of the analytic signal

(similar to the spectral amplitude estimator). Thus, the plug-in esti-

mate for the squared magnitude can be written as,

ÊS(m, i) = G(m, i)2 × EX(m, i), (3)

where ES ,EX denote the squared magnitude (Hilbert envelope) of

AX , AS respectively and G(m, i) denotes noise suppression rule.

We use the decision directed approach [9] to obtain G(m, i) as

G(m, i) =
ζ(m, i)

1 + ζ(m, i)
(4)

ζ(m, i) = α
ÊS(m − δ, i))

ÊN

+ (1 − α)
`

γ(m, i) − 1
´

(5)

γ(m, i) =
EX(m, i)

ÊN

(6)

where ÊN denotes the noise floor obtained as mean sub-band enve-

lope in noisy segments (identified by using short-term energy esti-

mates [11]), δ is the hangover constant, ζ(m, i) and γ(m, i) denote

the apriori and aposteriori SNR in the sub-band envelope. In our

case, we set α as 0.9 and δ as 25 ms.
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Figure 2: Gain normalized sub-band FDLP envelopes for clean and

noisy speech signal (babble 10 dB) (a) without and (b) with MMSE

noise suppression.

2.3. Modulation feature extraction

The noise suppressed Hilbert envelope is transformed using DFT

into spectral autocorrelations of the sub-band signal, which are used

for linear prediction. The order of the linear prediction corresponds

to 40 poles per second per sub-band. The steps involved in con-

verting the sub-band DCT signal into AR envelope parameters are

referred to as FDLP [8]. In our experiments, we use the gain nor-

malized FDLP envelopes as these are found to be more robust to

channel noise [7]. An illustration of the use of the MMSE noise sup-

pression rule on sub-band FDLP envelopes is shown in Fig. 2, where

we plot the envelopes from clean speech and noisy speech (babble

noise at 10 dB SNR) of a sub-band (500-700Hz) with and without

the MMSE noise suppression rule. When MMSE noise suppression

is applied, the match between sub-band envelopes extracted from

clean and noisy speech is improved.

The sub-band FDLP envelopes are then compressed using a

static compression which is a logarithmic function and a dynamic

compression scheme [7]. The compressed temporal envelopes are

divided into 200 ms segments with a shift of 10 ms. The tempo-

ral envelopes from the two compression streams are then converted

into modulation spectral components using DCT, corresponding to

the static and the dynamic modulation spectrum. The modulation

components form a 420 dimensional feature vector [7].

3. MLP BASED SAD

3.1. MLP training

The MLP estimates the posterior probability of phonemes given the

acoustic evidence P (qt = i|xt), where qt denotes the phoneme in-

dex at frame t, xt denotes the feature vector at frame t. We train

the MLP using a conversational telephone speech (CTS) database

which consists of 130 hours of conversational speech recorded over

a telephone channel at 8 kHz [13]. The training data consists of 100
hours of speech and cross-validation data set consists of 30 hours

of speech. It is labeled using 45 phonemes (44 speech classes and

1 silence class). The phoneme labels are obtained by force align-
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Figure 3: Spectrogram and two SAD outputs for (a) clean speech, (b) its reverberated version (convolved with artificial room response of

reverberation time 300 ms), and (c) its noisy version (added with babble noise at 10 dB SNR). The dotted line is adaptive energy-based

SAD [3] and the solid line is the proposed MLP-based SAD.

ing the word transcriptions to the previously trained HMM-GMM

models [13]. Here, the MLP consists of 5000 hidden neurons, and

45 output neurons (with soft max nonlinearity) representing the

phoneme classes. The training data for MLP consists mainly of

clean speech segments and thus does not make any assumption of

the noisy or reverberated speech.

3.2. SAD system

The trained MLP is used for the SAD system by forward passing

the features extracted from the noisy speech. The output 45 di-

mensional posterior vector is converted to 2 dimensional vector by

summing all the probability values for the speech classes. This is

hard-thresholded to obtain 0-1 speech activity decisions. These out-

puts are smoothed using a Viterbi decoder which uses a minimum

duration of 7 consecutive frames for speech/non-speech class [6].

Fig. 3 illustrates the performance of the proposed SAD system

on a 5 second portion of NIST 2008 test utterance. We also plot

the output of the SAD system on the noisy version (additive noise

with babble at 10 dB) and a reverberated version (artificial reverber-

ation of 300 ms). The solid line shows the output of the MLP-SAD

system and the dotted line shows the same for the energy based

SAD [3]. This plot shows that the proposed SAD has less amount

of false alarms and is quite robust in noise and reverberation. The

energy based SAD creates more false alarms for noisy speech.

4. EXPERIMENTS AND RESULTS

4.1. Speaker verification setup

Speaker verification experiments are performed on the telephone

subset of the NIST 2008 speaker recognition evaluation (SRE)

dataset, containing 1819 utterances, with both male and female

speakers. Verification performance is evaluated on three different

conditions (Conditions 6, 7 and 8) of the NIST SRE [12], consist-

ing of telephone speech. Enrollment data is unaltered NIST 2008

clean speech data whereas the test data is corrupted using (a) bab-

ble, (b) exhibition hall, (c) restaurant and (d) car noises from the

NOISEX-92 database, each resulting in speech at 5, 10, 15 and 20

dB SNR. Three reverberant versions of this dataset are also created

by convolving the speech with different room responses obtained

from [14] with reverberation time of 300 ms.

The speaker verification system in our experiments is a state-

of-the-art GMM-UBM system using 400 dimensional i-vectors for

speech representation [10]. Gaussian PLDA is applied to reduce the

dimension of the i-vectors to 150 dimensions and likelihood scores

are computed on these. In order to train the UBM and the total

variability matrix used in the i-vector estimation, development data

from NIST 2004 SRE, Switchboard II Phase III and NIST 2006

SRE is used. We use the short-term FDLP features for the speaker

verification system [15]. During evaluation, the enrollment data is

processed using the SAD decisions obtained from NIST (speech

recognition outputs) whereas the SAD for the test data is derived us-

ing the proposed MLP system as well as the other SAD techniques.

All results were obtained without any score normalization.

4.2. Performance evaluation

Performance of five SAD systems are compared here: (a) adap-

tive energy-based [3], (b) mel spectrum based [4], (c) multi-scale

spectro-temporal modulations based on auditory processing [5], (d)

the proposed MLP based SAD system with 9 frame context of

MFCC features processed with cepstral mean subtraction (MLP1)

and (e) the proposed MLP based SAD system with FDLP features

(MLP2). The SAD threshold for these systems were kept at the pre-

set value provided (calibrated to provide good performance in noisy

conditions).

Since the SAD decision threshold in a speaker verification sys-

tem is fixed in practice, the SAD performance is measured in terms

of the speaker verification equal error rate (EER). Furthermore, we

also evaluate the accuracy of the SAD decisions at the frame-level

by comparing them with those provided by NIST. The NIST SAD

(speech recognition output) is computed on clean speech and is con-

sidered to be the ground-truth for SAD evaluation. The SAD error

is defined as the average of the false alarm rate and miss rate com-

puted over all test utterances.
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C6: Train/test in multiple languages C7: English train/test C8: Native U.S. English train/test

Cond. Egy. Mel. Aud. MLP1 MLP2 Egy. Mel. Aud. MLP1 MLP2 Egy. Mel. Aud. MLP1 MLP2

Clean 10.7 12.4 12.5 8.6 8.9 4.0 5.1 7.1 2.9 2.9 2.9 4.3 6.8 1.4 1.4

5 dB 23.2 23.5 26.3 23.1 21.0 19.0 17.7 22.1 16.6 14.7 20.3 17.9 23.1 18.6 16.0

10 dB 17.9 16.5 16.5 15.2 13.5 12.3 10.2 11.0 9.1 7.5 13.6 9.1 11.9 9.9 8.5

15 dB 14.5 12.4 11.9 11.6 11.6 8.1 5.9 5.8 5.4 5.3 9.6 5.6 5.4 5.2 4.5

20 dB 12.4 10.7 10.6 9.9 10.5 6.0 4.4 3.9 3.4 3.5 6.3 3.8 2.9 2.7 3.2

Revb. 18.8 21.4 21.3 16.4 16.0 12.7 14.8 17.0 9.7 10.1 14.9 17.5 20.1 11.2 11.6

Table 1: Speaker verification performance in terms of EER, utilizing various SAD systems. For noisy and reverberant conditions, performance

is averaged over four noise types and three different room responses respectively.

Cond. Egy. Mel. Aud. MLP1 MLP2

Clean 23.5 28.5 34.0 10.5 11.5

5 dB 31.0 28.5 29.0 25.0 23.0

10 dB 27.5 21.5 21.5 17.5 17.0

15 dB 25.0 22.0 19.0 12.5 13.5

20 dB 23.5 15.0 19.0 11.3 12.0

Revb. 22.0 32.0 36.5 11.0 15.0

Table 2: SAD error computed as average of false alarms rate and

miss rate for different systems under various conditions.

4.3. Results and discussion

The speaker verification results obtained using the four SAD sys-

tems considered in this paper are given in Table 1. The performance

in noisy conditions for a particular SNR is averaged across the four

different types of noise. Similarly, performance in reverberation is

averaged across the three room responses. From Table 1, it can

be seen that the proposed MLP-based SAD (with FDLP features

or MFCC features) outperforms the other SAD methods in speaker

verification performance (relative EER improvements of 9 % in ad-

ditive noise, 19% in reverberant conditions and about 31 % in clean

conditions). However, it is also interesting to note that the improve-

ments for the MLP-SAD system is relatively less for C6 where the

test data can come from multiple languages as the MLP is trained

only on English CTS.

The SAD errors for different techniques (obtained at the operat-

ing threshold) are reported in Table 2. It can be seen that percentage

SAD error is considerably less for the proposed MLP-SAD system.

This is because of the reduced false alarm rate for a fixed miss rate

as compared with other systems. As false alarms in SAD decisions

are reduced, the resulting speaker verification system is able to per-

form speaker validation more on the speech regions as opposed to

non-speech regions.

5. CONCLUSIONS

In this paper, we have investigated an MLP-based speech activity

detector and applied it for a speaker verification task. The posterior

probabilities obtained from the MLP are merged into two classes

to form SAD outputs. The proposed SAD system results in im-

proved speaker verification performance, when compared to other

SAD systems. These systems are also evaluated based on SAD er-

ror where the MLP system shows good robustness.
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