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ABSTRACT

In this paper, we present a speech activity detection (SAD) tech-
nique for speaker verification in noisy environments. The proposed
SAD is based on phoneme posteriors derived from a multi-layer
perceptron (MLP). The MLP is trained using modulation spectral
features, where long temporal segments of the speech signal are
analyzed in critical bands. In each sub-band, temporal envelopes
are derived using the autoregressive modelling technique called fre-
quency domain linear prediction (FDLP). The robustness of the
sub-band envelopes is achieved by a minimum mean square enve-
lope estimation technique. We also experiment with MFCC features
processed with cepstral mean subtraction. The speech features are
input to the trained MLP to estimate phoneme posterior probabili-
ties. For SAD, all the speech phoneme probabilities are merged to
one speech class to derive speech/non-speech decisions. The pro-
posed SAD is applied for a speaker verification task using noisy
versions of NIST 2008 speaker recognition evaluation (SRE) data,
where the proposed SAD provides significant improvements (rela-
tive equal error rate (EER) improvement of about 9 % in additive
noise and about 19 % in reverberant conditions). Furthermore, the
improvements are consistent for the two different front-ends (FDLP
and MFCC) considered here.

Index Terms— Frequency Domain Linear Prediction (FDLP),
Speech Activity Detection, Speaker Verification.

1. INTRODUCTION

In most speech processing systems, the first step in dealing with a
speech signal is the reliable detection of speech activity. Speech
activity detection (SAD) has been studied for many decades now
and various algorithms have been developed for speech recogni-
tion, speech coding, speaker verification and other applications.
In the case of speaker verification, the main challenge is to ob-
tain speech segments with low amounts of false alarms for signals
embedded in noise and reverberation. In low signal-to-noise ratio
(SNR) and non-stationary environments, conventional approaches
often fail and speaker recognition performances can degrade signif-
icantly.

Several approaches have been proposed in the past for SAD.
Earlier methods like [1] use parameters from waveform like time
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domain linear prediction coefficients, zero crossing rate etc. Sta-
tistical approaches to SAD have also been explored in the past [2],
where a likelihood ratio test is applied on the noise to signal ratio.
The most common SAD is the adaptive, energy-based speech de-
tector [3]. Other approaches like estimation of noise energy from
the speech signal and using a threshold on the frame level mel spec-
trum SNR are used in speech recognition [4]. In a more recent
approach, multi-scale spectro-temporal modulations which emulate
human auditory processing have been also investigated for SAD [5].

In this paper, we address the problem of robust SAD using
multi-layer perceptrons (MLPs). MLPs are widely used in auto-
matic phoneme recognition tasks where they are used to estimate
phoneme posterior probabilities [6]. For SAD, the speech phoneme
posteriors are merged to single speech class. This gives a two
class posterior probability vector with speech/non-speech probabili-
ties. These probabilities are hard thresholded to speech/non-speech
decisions and a Viterbi decoder is used to smooth the decisions.
A minimum duration of 7 consecutive frames is imposed on the
speech/non-speech classes.

We propose to train MLPs using robust feature extraction
schemes based on frequency domain linear prediction (FDLP) [7].
In this process, the speech signal is analyzed in critical bands and
a minimum-mean square error (MMSE) estimation of the sub-band
Hilbert envelopes is performed [9]. The robust sub-band envelopes
are used for deriving using autoregressive models (FDLP) [8]. The
FDLP envelopes are compressed using static and dynamic compres-
sion and are converted to modulation frequency components [7]. In
order to test the performance of standard front-ends on the MLP
SAD system, we also experiment with MFCC features processed
with cepstral mean subtraction.

The proposed SAD technique is evaluated on noisy and rever-
berated versions of a subset of the NIST 2008 speaker recognition
evaluation (SRE) dataset. In these experiments, the MLP-based
SAD results in robust detection of speech segments compared to
other SAD techniques. Using various SAD techniques, we also
perform speaker verification experiments using a Gaussian mix-
ture model-universal background model (GMM-UBM) with the i-
vector Gaussian probabilistic linear discriminant analysis (PLDA)
system [10]. In these experiments, the MLP based SAD system
(with either FDLP or MFCC features) outperforms the other ap-
proaches in terms of both SAD error as well as the resulting speaker
recognition equal error rate (EER).

The rest of the paper is organized as follows. In Section 2, we
describe the proposed modulation feature extraction. The MLP-
based SAD system is described is Section 3. Experiments per-
formed with the SAD system are reported in Section 4. Finally,
we conclude in Section 5.
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Figure 1: Block schematic for the modulation spectrum based feature extraction technique.

2. FEATURE EXTRACTION

2.1. Extraction of non-parametric Hilbert envelope

The block schematic for the modulation spectrum based feature ex-
traction technique is shown in Fig. 1. Long segments of the speech
signal are decomposed into bark-spaced sub-bands by windowing
the discrete cosine transform (DCT). For deriving the sub-band
Hilbert envelope [8], the squared magnitude of the discrete Fourier
transform (DFT) is used. The MMSE technique is applied to esti-
mate the clean envelope from the noisy speech envelope [9].

2.2. MMSE Hilbert envelope estimation

When speech signal is corrupted by uncorrelated additive noise, the
signal that reaches the microphone can be written as

z[m] = s[m] + n[m], (1)

where z[m)] is the discrete representation of the input signal, s[m)]
represents the clean speech signal which is corrupted by noise n[m].
By virtue of the orthogonality property of the DCT matrix, the
speech and noise signals continue to be additive and uncorrelated
in the DCT domain. Further, the application of DFT on the zero
padded DCT signal [8] gives

Ax (m, ’L) = AS(m7 'L) + An (m7 7:)7 @

where Ax (m, 1), As(m,i) and Anx(m, 1) are the discrete time an-
alytic signal representations of the noisy speech, clean speech and
noise respectively for the sub-band ¢. The MMSE estimator [9] can
be used for the estimation of the magnitude of the analytic signal
(similar to the spectral amplitude estimator). Thus, the plug-in esti-
mate for the squared magnitude can be written as,

Es(m,i) = G(m,i)* x Ex(m,1), 3)

where Es,Ex denote the squared magnitude (Hilbert envelope) of
Ax, As respectively and G(m, i) denotes noise suppression rule.
We use the decision directed approach [9] to obtain G(m, %) as

Gm, i) = % )
i) = 0P 2D (1 —0) (3 = 1) )
y(m, i) = %Z”) ©6)

where Ev denotes the noise floor obtained as mean sub-band enve-
lope in noisy segments (identified by using short-term energy esti-
mates [11]), ¢ is the hangover constant, {(m, 7) and y(m, i) denote
the apriori and aposteriori SNR in the sub-band envelope. In our
case, we set « as 0.9 and 9 as 25 ms.
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Figure 2: Gain normalized sub-band FDLP envelopes for clean and
noisy speech signal (babble 10 dB) (a) without and (b) with MMSE
noise suppression.

2.3. Modulation feature extraction

The noise suppressed Hilbert envelope is transformed using DFT
into spectral autocorrelations of the sub-band signal, which are used
for linear prediction. The order of the linear prediction corresponds
to 40 poles per second per sub-band. The steps involved in con-
verting the sub-band DCT signal into AR envelope parameters are
referred to as FDLP [8]. In our experiments, we use the gain nor-
malized FDLP envelopes as these are found to be more robust to
channel noise [7]. An illustration of the use of the MMSE noise sup-
pression rule on sub-band FDLP envelopes is shown in Fig. 2, where
we plot the envelopes from clean speech and noisy speech (babble
noise at 10 dB SNR) of a sub-band (500-700Hz) with and without
the MMSE noise suppression rule. When MMSE noise suppression
is applied, the match between sub-band envelopes extracted from
clean and noisy speech is improved.

The sub-band FDLP envelopes are then compressed using a
static compression which is a logarithmic function and a dynamic
compression scheme [7]. The compressed temporal envelopes are
divided into 200 ms segments with a shift of 10 ms. The tempo-
ral envelopes from the two compression streams are then converted
into modulation spectral components using DCT, corresponding to
the static and the dynamic modulation spectrum. The modulation
components form a 420 dimensional feature vector [7].

3. MLP BASED SAD

3.1. MLP training

The MLP estimates the posterior probability of phonemes given the
acoustic evidence P(q: = i|x¢), where g; denotes the phoneme in-
dex at frame t, z; denotes the feature vector at frame t. We train
the MLP using a conversational telephone speech (CTS) database
which consists of 130 hours of conversational speech recorded over
a telephone channel at 8 kHz [13]. The training data consists of 100
hours of speech and cross-validation data set consists of 30 hours
of speech. It is labeled using 45 phonemes (44 speech classes and
1 silence class). The phoneme labels are obtained by force align-
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Figure 3: Spectrogram and two SAD outputs for (a) clean speech, (b) its reverberated version (convolved with artificial room response of
reverberation time 300 ms), and (c) its noisy version (added with babble noise at 10 dB SNR). The dotted line is adaptive energy-based

SAD [3] and the solid line is the proposed MLP-based SAD.

ing the word transcriptions to the previously trained HMM-GMM
models [13]. Here, the MLP consists of 5000 hidden neurons, and
45 output neurons (with soft max nonlinearity) representing the
phoneme classes. The training data for MLP consists mainly of
clean speech segments and thus does not make any assumption of
the noisy or reverberated speech.

3.2. SAD system

The trained MLP is used for the SAD system by forward passing
the features extracted from the noisy speech. The output 45 di-
mensional posterior vector is converted to 2 dimensional vector by
summing all the probability values for the speech classes. This is
hard-thresholded to obtain 0-1 speech activity decisions. These out-
puts are smoothed using a Viterbi decoder which uses a minimum
duration of 7 consecutive frames for speech/non-speech class [6].
Fig. 3 illustrates the performance of the proposed SAD system
on a 5 second portion of NIST 2008 test utterance. We also plot
the output of the SAD system on the noisy version (additive noise
with babble at 10 dB) and a reverberated version (artificial reverber-
ation of 300 ms). The solid line shows the output of the MLP-SAD
system and the dotted line shows the same for the energy based
SAD [3]. This plot shows that the proposed SAD has less amount
of false alarms and is quite robust in noise and reverberation. The
energy based SAD creates more false alarms for noisy speech.

4. EXPERIMENTS AND RESULTS

4.1. Speaker verification setup

Speaker verification experiments are performed on the telephone
subset of the NIST 2008 speaker recognition evaluation (SRE)
dataset, containing 1819 utterances, with both male and female
speakers. Verification performance is evaluated on three different
conditions (Conditions 6, 7 and 8) of the NIST SRE [12], consist-
ing of telephone speech. Enrollment data is unaltered NIST 2008
clean speech data whereas the test data is corrupted using (a) bab-
ble, (b) exhibition hall, (c) restaurant and (d) car noises from the

NOISEX-92 database, each resulting in speech at 5, 10, 15 and 20
dB SNR. Three reverberant versions of this dataset are also created
by convolving the speech with different room responses obtained
from [14] with reverberation time of 300 ms.

The speaker verification system in our experiments is a state-
of-the-art GMM-UBM system using 400 dimensional i-vectors for
speech representation [10]. Gaussian PLDA is applied to reduce the
dimension of the i-vectors to 150 dimensions and likelihood scores
are computed on these. In order to train the UBM and the total
variability matrix used in the i-vector estimation, development data
from NIST 2004 SRE, Switchboard II Phase III and NIST 2006
SRE is used. We use the short-term FDLP features for the speaker
verification system [15]. During evaluation, the enrollment data is
processed using the SAD decisions obtained from NIST (speech
recognition outputs) whereas the SAD for the test data is derived us-
ing the proposed MLP system as well as the other SAD techniques.
All results were obtained without any score normalization.

4.2. Performance evaluation

Performance of five SAD systems are compared here: (a) adap-
tive energy-based [3], (b) mel spectrum based [4], (c) multi-scale
spectro-temporal modulations based on auditory processing [5], (d)
the proposed MLP based SAD system with 9 frame context of
MFCC features processed with cepstral mean subtraction (MLP1)
and (e) the proposed MLP based SAD system with FDLP features
(MLP2). The SAD threshold for these systems were kept at the pre-
set value provided (calibrated to provide good performance in noisy
conditions).

Since the SAD decision threshold in a speaker verification sys-
tem is fixed in practice, the SAD performance is measured in terms
of the speaker verification equal error rate (EER). Furthermore, we
also evaluate the accuracy of the SAD decisions at the frame-level
by comparing them with those provided by NIST. The NIST SAD
(speech recognition output) is computed on clean speech and is con-
sidered to be the ground-truth for SAD evaluation. The SAD error
is defined as the average of the false alarm rate and miss rate com-
puted over all test utterances.
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C6: Train/test in multiple languages C7: English train/test C8: Native U.S. English train/test
Cond. | Egy. | Mel. | Aud. | MLP1 | MLP2 || Egy. | Mel. | Aud. | MLP1 | MLP2 || Egy. | Mel. | Aud. | MLP1 | MLP2
Clean | 10.7 | 124 | 125 8.6 8.9 4.0 5.1 7.1 2.9 2.9 2.9 43 6.8 1.4 14
5dB | 232 | 235 | 263 23.1 21.0 19.0 | 17.7 | 22.1 16.6 14.7 203 | 17.9 | 23.1 18.6 16.0
10dB | 17.9 | 16.5 | 16.5 15.2 13.5 123 | 102 | 11.0 9.1 7.5 136 | 9.1 11.9 9.9 8.5
15dB | 145 | 124 | 119 11.6 11.6 8.1 59 5.8 5.4 53 9.6 5.6 5.4 52 45
20dB | 124 | 10.7 | 10.6 9.9 10.5 6.0 44 3.9 3.4 3.5 6.3 3.8 29 2.7 32
Revb. | 18.8 | 214 | 21.3 16.4 16.0 12.7 | 148 | 17.0 9.7 10.1 149 | 17.5 | 20.1 11.2 11.6

Table 1: Speaker verification performance in terms of EER, utilizing various SAD systems. For noisy and reverberant conditions, performance
is averaged over four noise types and three different room responses respectively.

Cond. | Egy. | Mel. | Aud. | MLP1 | MLP2
Clean | 23.5 | 28.5 | 34.0 10.5 11.5
5dB | 31.0 | 285 | 29.0 25.0 23.0
10dB | 27.5 | 21.5 | 21.5 17.5 17.0
15dB | 25.0 | 22.0 | 19.0 12.5 13.5
20dB | 23.5 | 15.0 | 19.0 11.3 12.0
Revb. | 22.0 | 32.0 | 36.5 11.0 15.0

Table 2: SAD error computed as average of false alarms rate and
miss rate for different systems under various conditions.

4.3. Results and discussion

The speaker verification results obtained using the four SAD sys-
tems considered in this paper are given in Table 1. The performance
in noisy conditions for a particular SNR is averaged across the four
different types of noise. Similarly, performance in reverberation is
averaged across the three room responses. From Table 1, it can
be seen that the proposed MLP-based SAD (with FDLP features
or MFCC features) outperforms the other SAD methods in speaker
verification performance (relative EER improvements of 9 % in ad-
ditive noise, 19% in reverberant conditions and about 31 % in clean
conditions). However, it is also interesting to note that the improve-
ments for the MLP-SAD system is relatively less for C6 where the
test data can come from multiple languages as the MLP is trained
only on English CTS.

The SAD errors for different techniques (obtained at the operat-
ing threshold) are reported in Table 2. It can be seen that percentage
SAD error is considerably less for the proposed MLP-SAD system.
This is because of the reduced false alarm rate for a fixed miss rate
as compared with other systems. As false alarms in SAD decisions
are reduced, the resulting speaker verification system is able to per-
form speaker validation more on the speech regions as opposed to
non-speech regions.

5. CONCLUSIONS

In this paper, we have investigated an MLP-based speech activity
detector and applied it for a speaker verification task. The posterior
probabilities obtained from the MLP are merged into two classes
to form SAD outputs. The proposed SAD system results in im-
proved speaker verification performance, when compared to other
SAD systems. These systems are also evaluated based on SAD er-
ror where the MLP system shows good robustness.
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