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ABSTRACT Even when the spectral information is limited, the use of temporal
) . amplitude modulations alone provides good human speech recog-
In this paper, we compare several approaches for the extraction gfion [9]. These studies suggest that amplitude modulations could
modulation frequency features from speech signal using a phone”ﬂﬁ'ovide alternative feature representations for ASR.

recognition system. The general _framework in these approach_es IS geveral techniques have been proposed for which use modula-
to decompose the speech signal into a set of sub-bands. Amplitudg, spectrum for feature extraction [10, 11, 12, 13]. Here, the $peec
modulations (AM) in the sub-band signal are used to derive featuregigna| is divided into a set of sub-bands. In each sub-band, an AM
for automatic speech recognition (ASR). Then, we propose a fegjemodulation procedure is carried out to derive the sub-band AM
ture extraction technique which uses autoregressive models (AR) @yelopes. These envelope are converted to modulation frequency
sub-band Hilbert envelopes in relatively long segments of speeclymponents and are used for speech recognition. These techniques
signal. AR models of Hilbert envelopes are derived using frequencyinly differ in the AM demodulation procedure (for example, the
domain linear prediction (FDLP). Features are formed by converty it wave rectification [10, 12], Hilbert envelope approaches [13],
ing the FDLP envelopes into static and dynamic modulation fre4q long-term sub-band energy based approaches [11]). In this pa

guency components. In the phoneme recogni_tion experiments usir&r’ we briefly review these techniques for the task of phoneme
the TIMIT database, the FDLP based modulation frequency featur%cognition.

provide significant improvements compared to other techniques (av- \yg present a feature extraction technique that tries to capture
erage relative improvement Gt5 % over the base-line features). fine temporal dynamics along with static modulations using sub-
Furthermore, a detailed analysis is performed to determine the relgy, g temporal envelopes [14]. The input speech signal is decom-
tive contribution of various processing stages in the proposed tecrb'osed into a set of critical bands (Bark scale decomposition) and

nique. long temporal envelopes of sub-band signals are extracted using the
Index Terms— Frequency domain linear prediction (FDLP), technique of frequency domain linear prediction (FDLP) [13]. The
Modulations, Feature Extraction, Phoneme recognition. sub-band temporal envelopes of the speech signal are then mdcess

by a static compression stage and a dynamic compression stage. The

static compression stage is a logarithmic operation and the adap-
1. INTRODUCTION tive compression stage uses the adaptive compression loops pro-

posed in [15]. The compressed sub-band envelopes are traesform

Traditionally, acoustic features for Automatic Speech Recognition,iq modulation frequency components and used as features for the
(ASR) systems are extracted by applying Bark or Mel scale imegraﬁ)honeme recognition system.

tors on power spectral estimates in short analysis winda®s-(30 A hybrid Hidden Markov Model - Artificial Neural Network
ms) of the speech signal. Typical examples of such features ar MM-ANN) phoneme recognition system is used for all the ex-
the Mel Frequency Cepstral Coefficients (MFCC) [1] and Perceptuglariments [16]. In the phoneme recognition experiments on the
Linear Prediction (PLP) [2]. The signal is represented by a sequencg\T gatabase, the proposed features provide significant improve-
of short-term feature vectors with each vector forming a sample ofants over other techniques. The rest of the paper is organized as
the underlying process. Most of the information contained in thes?ollows. In Sec. 2, we briefly review various modulation spectrum
acoustic features relate to formants which provide important cues foépproaches proposed in the past for ASR. In Sec. 3, the proposed
recognition of some of the basic speech units. _ FDLP technique for deriving static and dynamic modulation features
An alternate way to describe a speech signal is that of a sumg explained. Experiments with the modulation features for phoneme
mation of a number of amplitude modulated narrow frequency subgecognition task are reported in Sec. 4. A detailed analysis of the var-
bands. In this view, every frequency band can be considered g5 parameters used in the FDLP technique is described in Sec. 5.

consist of a carrier signal (fine structure) and a time-varying envey, gec. 6, we conclude with a discussion of the proposed features.
lope [3]. Spectral representation of amplitude modulation in sub-

bands, also called “Modulation Spectra”, have been used in many en-
gineering applications. Early work done in [4] for predicting speech 2. PAST MODULATION APPROACHES FOR ASR
intelligibility and characterizing room acoustics are now widely used . . . .
in the industry [5]. Recently, there has been many applications of! tNiS Section, a few techniques proposed in the past for the use of
such concepts for audio coding [6] and noise suppression [7].  medulation spectra in ASR are described.

It has been shown that important information for speech percep- e Modulation Spectrogram (MSG) - A speech representation
tion lies in thel — 16 Hz range of the modulation frequencies [8]. is developed that emphasizes the low-frequency (below 16
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Fig. 2. Block schematic for the FDLP based modulation spectrum feature ggtraechnique.

Hz) amplitude modulations in sub-band channels [10]. Here
a spectral analysis into critical-band-wide channels is per
formed on an incoming speech signal. In each channel, a
amplitude-envelope signal is computed by half-wave rectifi-
cation and low-pass filtering with a cutoff frequency 28

Hz. Each amplitude envelope signal is then downsamplet
by a factor 0f100 and the slow modulations in each envelope
signal are then analyzed by filtering the signal through a com
plex bandpass filter. These modulation components are use
as features for ASR [10].

e MRASTA - A speech feature extraction based on multiple fil-
tering of temporal trajectories of speech energies in frequenc
sub-bands is developed [11]. These filters emphasize differ-
ent regions of the modulation spectrum in the range fflem
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30 Hz. Further, the filters are designed to have zero-meaffig- 3 lllustration of the all-pole modelling property of FDLP. (a) a
property which imply robustness to linear distortions of the portion of the sub-band speech signal, (b) its Hilbert envelope (c) all

signal and to changes in spectral tilt. The output of the filtersP0le model obtained using FDLP

applied on long temporal trajectorieB)00 ms) of sub-band
energies, are used as features for speech recognition [11].

e Fepstum - Here, speech signal is analyzed in narrow subBFT (IDFT) of the DCT coefficients represents the discrete time an-
bands and an analytic signal is estimated in each subalytic signal [13]. Spectral autocorrelations are derived by the appli-
band [12]. The logarithm of the absolute magnitude of thecation of DFT on the squared magnitude of analytic signal. These
sub-band analytic signal is used as an estimate of the AMwutocorrelations are used for linear prediction (similar to the appli-

signal. This is downsampled by a factor 10 and lower

cation of TDLP using time domain autocorrelations [17]).

discrete cosine transform (DCT) coefficients are used as form  Fig. 3 shows the AR modelling property of FDLP. It shows (a) a
modulation spectral components. The modulation compoportion of speech signal, (b) its Hilbert envelope and (c) an all pole
nents from various sub-bands are collected and dimensiorapproximation to the Hilbert Envelope using FDLP.

The block schematic for the proposed feature extraction tech-

ality reduced. A temporal context &fframes of Fepstrum
features is used for phoneme recognition tasks [12].

nique is shown in Fig. 2. Long segments of speech signal are ana-

lyzed in critical bands using the technique of FDLP. The sub-band

3. AR MODELS OF HILBERT ENVELOPES

temporal envelopes are then compressed using a static compression

scheme which is a logarithmic function and a dynamic compression

FDLP forms an efficient method for obtaining smoothed, minimumscheme [14]. The use of the logarithm is to model the overall non-

phase, parametric models of temporal rather than spectral envelopdisear compression in the auditory system which covers the huge
Being an auto-regressive (AR) modelling technique, FDLP capturedynamical range between the hearing threshold and the uncomfort-
the high signal-to-noise ratio (SNR) peaks in the temporal envelopable loudness level. The adaptive compression is realized by an
Fig. 1 shows the block schematic for the implementation of FDLPadaptation circuit consisting of five consecutive nonlinear adaptation

technique. Long segments of the input signal (of the orddi060

loops [15]. Each of these loops consists of a divider and a low-pass

ms) are transformed into frequency domain using DCT. The inversélter with time constants ranging froh ms to500 ms. The input



Table 1. Phoneme Recognition Accuracies (%) for PLP features andable 2. Phoneme Recognition Accuracies (%) for various modifi-

various modulation features on TIMIT database. cations of the proposed feature extraction technique.
PLP-9 | Fepstrum[ MSG [ MRASTA [ FDLP AM Demodulation
66.8 61.1 62.4 64.5 69.3 Half-Wave | Energy FDLP
67.0 67.7 69.3
Temporal Context (ms)
signal is divided by the output signal of the low-pass filter in each 100 | 200 300 400
adaptation loop. Sudden transitions in the sub-band envelope that 68.7 | 69.3| 68.0 66.2
are very fast compared to the time constants of the adaptation loops Modulation Extent (Hz)
are amplified linearly at the output due to the slow changes in the 15 25 35 45
low pass filter output, whereas the slowly changing regions of the 6711 6911 693 69.1
input signal are compressed. o6 of Modulation
Conventional speech recognizers require speech features sam- Stat yp ) ST
pled at100 Hz (i.e one feature vector eveiy) ms). For using our at. yn. at. yn.
speech representation in a conventional recognizer, the compressed 67.9 64.6 69.3

temporal envelopes are divided i200 ms segments with a shift

of 10 ms. Discrete Cosine Transform (DCT) of both the static and

the dynamic segments of temporal envelope yields the static and th#ation approaches, MRASTA features provide the best phoneme
dynamic modulation spectrum respectively. We lisenodulation ~ recognition performance. FDLP based features using static and dy-
frequency components from each cosine transform, yielding modu?amic modulation spectrum provides a relative improvemefit®f
lation spectrum in the-35 Hz region with a resolution df.5 Hz. % compared to the baseline PLP features.

4. EXPERIMENTS AND RESULTS 5. RELATIVE CONTRIBUTION OF VARIOUS
PROCESSING STEPS
The proposed features are used for a phoneme recognition task

the TIMIT database. We use a phoneme recognition system basjg]e previous section showed that the proposed feature extraction
provides promising phoneme recognition performance on TIMIT

on the Hidden Markov Model - Artificial Neural Network (HMM- . o .
( database. In-order to analyze the relative contribution of vari-

ANN) paradigm [16] trained on the TIMIT database sampled at :
16 kHz. The training data consists 6000 utterances fron875 ous stages of the proposed feature extraction, we perform a set of

speakers, cross-validation data set consist96futterances from phoneme recognition experiments with different modifications to the

87 speakers and the test data set consistk3dft utterances from proposed features. These modifications are:
168 speakers. The TIMIT database, which is hand-labeled u&ing ) .
labels is mapped to the standard ses@phonemes [18]. Choice of AM demodulation

The base_line SVSte“? fprthese experiments USes the conventionme proposed features use FDLP technique for AM demodulation
Perceptual Linear Prediction (PLP) features [2] with a context of of sub-band signals. As mentioned in Sec. 2, other methods of

frames [18] 851 dimensional features denoted as PLP-9). In theA demodulation have been used in the past. We compare the

past, some of the modu_latlon fe_ature technl_qt_les have been _usra oneme recognition performance of FDLP approach with the half-

as additional sources of information by combining the modulation, e rectification technique [10] and the sub-band energy trajectory
spectrum with conventional short-term PLP or MFCC features (forapproach [11]. All the other processing stages in the proposed fea-
example Fepstrum [12], MSG [10]). However, in our experimentsy o jike the sub-band decomposition, static and dynamic modula-
we report the recognition performance of the modulation featureﬁon spectrum etc) are retained. These results are shown in Table 2.

independently without any combination. This is done in order to iI-In these experiments, FDLP based AM demodulation provides the
lustrate the use of modulation spectrum as alternate representatiBgst phoneme recognition

compared to the conventional short-term spectral features.

In our implementation, Fepstrum features consist afiodula-
tion frequency components in the-25 Hz range fromt0 mel bands
yielding 200 dimensional vector for each frame. These features arerhe temporal analysis window for the extraction of static and dy-
dimensionality reduced t60 dimensional features [12]. A context namic modulations is modified in these experiments fi@Mto 400
of 9 frames gives &40 dimensional feature vector at the input of ms. FDLP based sub-band processing is used and static and dynamic
the phoneme recognition system. MSG features consitnebdu-  modulation features are derived. These results are shown in the sec-
lation components from6 sub-bands resulting i824 dimensional  ond row of Table 2. It is interesting to note that the best phoneme
features for every speech frame [10]. MRASTA featureslserit-  recognition performance is obtained for a contex2@® ms, which

ical bands withl4 modulation filters. These are appended with fre- g1so corresponds to the average syllabic rate of human speech.
quency derivatives yielding04 dimensional features [11]. For the

FDLP based modulation featurey, critical bands are used witht
static modulation spectral components ddddynamic modulation
spectral components. This give88 dimensional features at the in- In these experiments, the extent of modulation spectrum used for fea-
put vector. ture extraction is varied from5-45 Hz. The duration of modulation
Table 1 summarizes the results for the phoneme recognition exanalysis on the FDLP envelopes is fixe@@® ms and the number of
periments with various modulation features. Among the past modbCT coefficients is varied. Static and dynamic modulations are used

Duration of Temporal Context

Extent of Modulation Information



for phoneme recognition. These results, reported in the third row of[5] IEC 60268-16, “Sound system equipment - Part 16: Objective

Table 2, show that the phoneme recognition performance peaks for

a modulation content in the range35 Hz.

Type of Modulation Spectrum

As mentioned before, we derive modulation information from two
types of envelope compression scheme. Static modulations are de-

rating of speech intelligibility by speech transmission index”,
<http://mww.iec.ch/>

M. S. Vinton and L. E. Atlas, “Scalable and progressive au-
dio codec,”Proc. of Acoustics, Speech and Sgnal Processing
(ICASSP), Vol. 5, pp. 3277-3280, Salt Lake City, USA, Apr.
2001.

rived using a logarithmic compression and the dynamic modulations[7] T. H. Falk, S. Stadler, W. B. Kleijn and Wai-Yip Chan, “Noise

are derived using adaptive loops. FDLP envelope with a tempo-
ral context of200 ms is used for deriving the modulations in the
range of0-35 Hz. These results are shown at the bottom of Table 2. |g
The static modulation features provide good phoneme recognition
for fricatives and nasals (which is due to modelling property of the
signhal peaks in static compression) whereas the dynamic modulation

features provide good performance for plosives and affricateerv

the fine temporal fluctuations like onsets and offsets carry the impor-
tant phoneme classification information) [14]. Hence, the combina-
tion of these feature streams results in considerable improvement [nQ]

performance for most of the phoneme classes.

From all these experiments, it is found that the feature extraction
technique which uses static and dynamic modulation spectrim in
35 Hz range obtained frora00 ms of FDLP envelopes provides the

best phoneme recognition performance.

6. SUMMARY

In this paper, we have compared some of the modulation approachfk3]
for phoneme recognition task. We have also proposed a feature ex-

traction technique based on the modulation spectrum. Here, Hilbert
envelopes of frequency sub-bands are modelled using FDLP. The

temporal envelopes are compressed using an adaptive and stafl
compression and are converted to modulation frequency compo-
nents. These features provide significant improvements for phoneme

recognition tasks. The results are promising and encourage us to ex-
15] J. Tchorz and B. Kollmeier,"A model of auditory perception

periment on other tasks with different test conditions.
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