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ABSTRACT

In this paper, we compare several approaches for the extraction of
modulation frequency features from speech signal using a phoneme
recognition system. The general framework in these approaches is
to decompose the speech signal into a set of sub-bands. Amplitude
modulations (AM) in the sub-band signal are used to derive features
for automatic speech recognition (ASR). Then, we propose a fea-
ture extraction technique which uses autoregressive models (AR) of
sub-band Hilbert envelopes in relatively long segments of speech
signal. AR models of Hilbert envelopes are derived using frequency
domain linear prediction (FDLP). Features are formed by convert-
ing the FDLP envelopes into static and dynamic modulation fre-
quency components. In the phoneme recognition experiments using
the TIMIT database, the FDLP based modulation frequency features
provide significant improvements compared to other techniques (av-
erage relative improvement of7.5 % over the base-line features).
Furthermore, a detailed analysis is performed to determine the rela-
tive contribution of various processing stages in the proposed tech-
nique.

Index Terms— Frequency domain linear prediction (FDLP),
Modulations, Feature Extraction, Phoneme recognition.

1. INTRODUCTION

Traditionally, acoustic features for Automatic Speech Recognition
(ASR) systems are extracted by applying Bark or Mel scale integra-
tors on power spectral estimates in short analysis windows (10− 30

ms) of the speech signal. Typical examples of such features are
the Mel Frequency Cepstral Coefficients (MFCC) [1] and Perceptual
Linear Prediction (PLP) [2]. The signal is represented by a sequence
of short-term feature vectors with each vector forming a sample of
the underlying process. Most of the information contained in these
acoustic features relate to formants which provide important cues for
recognition of some of the basic speech units.

An alternate way to describe a speech signal is that of a sum-
mation of a number of amplitude modulated narrow frequency sub-
bands. In this view, every frequency band can be considered to
consist of a carrier signal (fine structure) and a time-varying enve-
lope [3]. Spectral representation of amplitude modulation in sub-
bands, also called “Modulation Spectra”, have been used in many en-
gineering applications. Early work done in [4] for predicting speech
intelligibility and characterizing room acoustics are now widely used
in the industry [5]. Recently, there has been many applications of
such concepts for audio coding [6] and noise suppression [7].

It has been shown that important information for speech percep-
tion lies in the1 − 16 Hz range of the modulation frequencies [8].

Even when the spectral information is limited, the use of temporal
amplitude modulations alone provides good human speech recog-
nition [9]. These studies suggest that amplitude modulations could
provide alternative feature representations for ASR.

Several techniques have been proposed for which use modula-
tion spectrum for feature extraction [10, 11, 12, 13]. Here, the speech
signal is divided into a set of sub-bands. In each sub-band, an AM
demodulation procedure is carried out to derive the sub-band AM
envelopes. These envelope are converted to modulation frequency
components and are used for speech recognition. These techniques
mainly differ in the AM demodulation procedure (for example, the
half-wave rectification [10, 12], Hilbert envelope approaches [13],
and long-term sub-band energy based approaches [11]). In this pa-
per, we briefly review these techniques for the task of phoneme
recognition.

We present a feature extraction technique that tries to capture
fine temporal dynamics along with static modulations using sub-
band temporal envelopes [14]. The input speech signal is decom-
posed into a set of critical bands (Bark scale decomposition) and
long temporal envelopes of sub-band signals are extracted using the
technique of frequency domain linear prediction (FDLP) [13]. The
sub-band temporal envelopes of the speech signal are then processed
by a static compression stage and a dynamic compression stage. The
static compression stage is a logarithmic operation and the adap-
tive compression stage uses the adaptive compression loops pro-
posed in [15]. The compressed sub-band envelopes are transformed
into modulation frequency components and used as features for the
phoneme recognition system.

A hybrid Hidden Markov Model - Artificial Neural Network
(HMM-ANN) phoneme recognition system is used for all the ex-
periments [16]. In the phoneme recognition experiments on the
TIMIT database, the proposed features provide significant improve-
ments over other techniques. The rest of the paper is organized as
follows. In Sec. 2, we briefly review various modulation spectrum
approaches proposed in the past for ASR. In Sec. 3, the proposed
FDLP technique for deriving static and dynamic modulation features
is explained. Experiments with the modulation features for phoneme
recognition task are reported in Sec. 4. A detailed analysis of the var-
ious parameters used in the FDLP technique is described in Sec. 5.
In Sec. 6, we conclude with a discussion of the proposed features.

2. PAST MODULATION APPROACHES FOR ASR

In this section, a few techniques proposed in the past for the use of
modulation spectra in ASR are described.

• Modulation Spectrogram (MSG) - A speech representation
is developed that emphasizes the low-frequency (below 16
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Fig. 1. Block schematic for the frequency domain linear prediction (FDLP)
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Fig. 2. Block schematic for the FDLP based modulation spectrum feature extraction technique.

Hz) amplitude modulations in sub-band channels [10]. Here,
a spectral analysis into critical-band-wide channels is per-
formed on an incoming speech signal. In each channel, an
amplitude-envelope signal is computed by half-wave rectifi-
cation and low-pass filtering with a cutoff frequency of28

Hz. Each amplitude envelope signal is then downsampled
by a factor of100 and the slow modulations in each envelope
signal are then analyzed by filtering the signal through a com-
plex bandpass filter. These modulation components are used
as features for ASR [10].

• MRASTA - A speech feature extraction based on multiple fil-
tering of temporal trajectories of speech energies in frequency
sub-bands is developed [11]. These filters emphasize differ-
ent regions of the modulation spectrum in the range from0-
30 Hz. Further, the filters are designed to have zero-mean
property which imply robustness to linear distortions of the
signal and to changes in spectral tilt. The output of the filters,
applied on long temporal trajectories (1000 ms) of sub-band
energies, are used as features for speech recognition [11].

• Fepstum - Here, speech signal is analyzed in narrow sub-
bands and an analytic signal is estimated in each sub-
band [12]. The logarithm of the absolute magnitude of the
sub-band analytic signal is used as an estimate of the AM
signal. This is downsampled by a factor of100 and lower
discrete cosine transform (DCT) coefficients are used as form
modulation spectral components. The modulation compo-
nents from various sub-bands are collected and dimension-
ality reduced. A temporal context of9 frames of Fepstrum
features is used for phoneme recognition tasks [12].

3. AR MODELS OF HILBERT ENVELOPES

FDLP forms an efficient method for obtaining smoothed, minimum
phase, parametric models of temporal rather than spectral envelopes.
Being an auto-regressive (AR) modelling technique, FDLP captures
the high signal-to-noise ratio (SNR) peaks in the temporal envelope.
Fig. 1 shows the block schematic for the implementation of FDLP
technique. Long segments of the input signal (of the order of1000

ms) are transformed into frequency domain using DCT. The inverse
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Fig. 3. Illustration of the all-pole modelling property of FDLP. (a) a
portion of the sub-band speech signal, (b) its Hilbert envelope (c) all
pole model obtained using FDLP

DFT (IDFT) of the DCT coefficients represents the discrete time an-
alytic signal [13]. Spectral autocorrelations are derived by the appli-
cation of DFT on the squared magnitude of analytic signal. These
autocorrelations are used for linear prediction (similar to the appli-
cation of TDLP using time domain autocorrelations [17]).

Fig. 3 shows the AR modelling property of FDLP. It shows (a) a
portion of speech signal, (b) its Hilbert envelope and (c) an all pole
approximation to the Hilbert Envelope using FDLP.

The block schematic for the proposed feature extraction tech-
nique is shown in Fig. 2. Long segments of speech signal are ana-
lyzed in critical bands using the technique of FDLP. The sub-band
temporal envelopes are then compressed using a static compression
scheme which is a logarithmic function and a dynamic compression
scheme [14]. The use of the logarithm is to model the overall non-
linear compression in the auditory system which covers the huge
dynamical range between the hearing threshold and the uncomfort-
able loudness level. The adaptive compression is realized by an
adaptation circuit consisting of five consecutive nonlinear adaptation
loops [15]. Each of these loops consists of a divider and a low-pass
filter with time constants ranging from5 ms to500 ms. The input



Table 1. Phoneme Recognition Accuracies (%) for PLP features and
various modulation features on TIMIT database.

PLP-9 Fepstrum MSG MRASTA FDLP
66.8 61.1 62.4 64.5 69.3

signal is divided by the output signal of the low-pass filter in each
adaptation loop. Sudden transitions in the sub-band envelope that
are very fast compared to the time constants of the adaptation loops
are amplified linearly at the output due to the slow changes in the
low pass filter output, whereas the slowly changing regions of the
input signal are compressed.

Conventional speech recognizers require speech features sam-
pled at100 Hz (i.e one feature vector every10 ms). For using our
speech representation in a conventional recognizer, the compressed
temporal envelopes are divided into200 ms segments with a shift
of 10 ms. Discrete Cosine Transform (DCT) of both the static and
the dynamic segments of temporal envelope yields the static and the
dynamic modulation spectrum respectively. We use14 modulation
frequency components from each cosine transform, yielding modu-
lation spectrum in the0-35 Hz region with a resolution of2.5 Hz.

4. EXPERIMENTS AND RESULTS

The proposed features are used for a phoneme recognition task on
the TIMIT database. We use a phoneme recognition system based
on the Hidden Markov Model - Artificial Neural Network (HMM-
ANN) paradigm [16] trained on the TIMIT database sampled at
16 kHz. The training data consists of3000 utterances from375

speakers, cross-validation data set consists of696 utterances from
87 speakers and the test data set consists of1344 utterances from
168 speakers. The TIMIT database, which is hand-labeled using61

labels is mapped to the standard set of39 phonemes [18].
The baseline system for these experiments uses the conventional

Perceptual Linear Prediction (PLP) features [2] with a context of9

frames [18] (351 dimensional features denoted as PLP-9). In the
past, some of the modulation feature techniques have been used
as additional sources of information by combining the modulation
spectrum with conventional short-term PLP or MFCC features (for
example Fepstrum [12], MSG [10]). However, in our experiments
we report the recognition performance of the modulation features
independently without any combination. This is done in order to il-
lustrate the use of modulation spectrum as alternate representation
compared to the conventional short-term spectral features.

In our implementation, Fepstrum features consist of5 modula-
tion frequency components in the0−25 Hz range from40 mel bands
yielding 200 dimensional vector for each frame. These features are
dimensionality reduced to60 dimensional features [12]. A context
of 9 frames gives a540 dimensional feature vector at the input of
the phoneme recognition system. MSG features consist of9 modu-
lation components from36 sub-bands resulting in324 dimensional
features for every speech frame [10]. MRASTA features use19 crit-
ical bands with14 modulation filters. These are appended with fre-
quency derivatives yielding504 dimensional features [11]. For the
FDLP based modulation features,21 critical bands are used with14

static modulation spectral components and14 dynamic modulation
spectral components. This gives588 dimensional features at the in-
put vector.

Table 1 summarizes the results for the phoneme recognition ex-
periments with various modulation features. Among the past mod-

Table 2. Phoneme Recognition Accuracies (%) for various modifi-
cations of the proposed feature extraction technique.

AM Demodulation
Half-Wave Energy FDLP

67.0 67.7 69.3

Temporal Context (ms)
100 200 300 400
68.7 69.3 68.0 66.2

Modulation Extent (Hz)
15 25 35 45

67.1 69.1 69.3 69.1

Type of Modulation
Stat. Dyn. Stat. + Dyn.
67.9 64.6 69.3

ulation approaches, MRASTA features provide the best phoneme
recognition performance. FDLP based features using static and dy-
namic modulation spectrum provides a relative improvement of7.5

% compared to the baseline PLP features.

5. RELATIVE CONTRIBUTION OF VARIOUS
PROCESSING STEPS

The previous section showed that the proposed feature extraction
provides promising phoneme recognition performance on TIMIT
database. In-order to analyze the relative contribution of vari-
ous stages of the proposed feature extraction, we perform a set of
phoneme recognition experiments with different modifications to the
proposed features. These modifications are:

Choice of AM demodulation

The proposed features use FDLP technique for AM demodulation
of sub-band signals. As mentioned in Sec. 2, other methods of
AM demodulation have been used in the past. We compare the
phoneme recognition performance of FDLP approach with the half-
wave rectification technique [10] and the sub-band energy trajectory
approach [11]. All the other processing stages in the proposed fea-
tures (like the sub-band decomposition, static and dynamic modula-
tion spectrum etc) are retained. These results are shown in Table 2.
In these experiments, FDLP based AM demodulation provides the
best phoneme recognition.

Duration of Temporal Context

The temporal analysis window for the extraction of static and dy-
namic modulations is modified in these experiments from100 to400

ms. FDLP based sub-band processing is used and static and dynamic
modulation features are derived. These results are shown in the sec-
ond row of Table 2. It is interesting to note that the best phoneme
recognition performance is obtained for a context of200 ms, which
also corresponds to the average syllabic rate of human speech.

Extent of Modulation Information

In these experiments, the extent of modulation spectrum used for fea-
ture extraction is varied from15-45 Hz. The duration of modulation
analysis on the FDLP envelopes is fixed at200 ms and the number of
DCT coefficients is varied. Static and dynamic modulations are used



for phoneme recognition. These results, reported in the third row of
Table 2, show that the phoneme recognition performance peaks for
a modulation content in the range0-35 Hz.

Type of Modulation Spectrum

As mentioned before, we derive modulation information from two
types of envelope compression scheme. Static modulations are de-
rived using a logarithmic compression and the dynamic modulations
are derived using adaptive loops. FDLP envelope with a tempo-
ral context of200 ms is used for deriving the modulations in the
range of0-35 Hz. These results are shown at the bottom of Table 2.
The static modulation features provide good phoneme recognition
for fricatives and nasals (which is due to modelling property of the
signal peaks in static compression) whereas the dynamic modulation
features provide good performance for plosives and affricates (where
the fine temporal fluctuations like onsets and offsets carry the impor-
tant phoneme classification information) [14]. Hence, the combina-
tion of these feature streams results in considerable improvement in
performance for most of the phoneme classes.

From all these experiments, it is found that the feature extraction
technique which uses static and dynamic modulation spectrum in0-
35 Hz range obtained from200 ms of FDLP envelopes provides the
best phoneme recognition performance.

6. SUMMARY

In this paper, we have compared some of the modulation approaches
for phoneme recognition task. We have also proposed a feature ex-
traction technique based on the modulation spectrum. Here, Hilbert
envelopes of frequency sub-bands are modelled using FDLP. These
temporal envelopes are compressed using an adaptive and static
compression and are converted to modulation frequency compo-
nents. These features provide significant improvements for phoneme
recognition tasks. The results are promising and encourage us to ex-
periment on other tasks with different test conditions.
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