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ABSTRACT

In this paper, we present a robust spectro-temporal feature extrac-
tion technique using autoregressive models (AR) of sub-band Hilbert
envelopes. AR models of Hilbert envelopes are derived using fre-
quency domain linear prediction (FDLP). From the sub-band Hilbert
envelopes, spectral features are derived by integrating these en-
velopes in short-term frames and the temporal features are formed
by converting these envelopes into modulation frequency compo-
nents. The spectral and temporal feature streams are then com-
bined at the phoneme posterior level and are used as the input fea-
tures for a recognition system. For the proposed features, robustness
is achieved by using novel techniques of noise compensation and
gain normalization. Phoneme recognition experiments on telephone
speech in the HTIMIT database show significant performance im-
provements for the proposed features when compared to other robust
feature techniques (average relative reduction of10.6 % in phoneme
error rate). In addition to the overall phoneme recognition rates, the
performance with broad phonetic classes is also reported.

Index Terms— Frequency domain linear prediction (FDLP),
Hilbert Envelopes, Robust spectro-temporal features, Phoneme
recognition.

1. INTRODUCTION

Conventional speech analysis techniques estimate the spectral con-
tent of relatively short (about 10-20 ms) segments of the signal
(short-term spectrum). Each estimated vector of spectral energies
represents a sample of the underlying dynamic process in production
of speech at a given time-frame. Most of the information contained
in these acoustic features relate to formants which provide important
cues for recognition of basic speech units. Stacking such estimates
of the short-term spectra in time provides a two-dimensional (time-
frequency) representation of speech that forms the basis for most
speech features (for example [1]).

An alternate way to describe a speech signal is that of a sum-
mation of a number of amplitude modulated narrow frequency sub-
bands. In this view, every frequency band can be considered to
consist of a carrier signal (fine structure) and a time-varying enve-
lope [2]. One can directly estimate trajectories of spectral energies
in the individual frequency sub-bands, each estimated vector then
representing the underlying dynamic process in a given sub-band.
Such estimates, stacked in frequency, also form a two-dimensional
representation of speech (for example [3]).

For human phoneme recognition, it has been shown that modu-
lation information of0-16 Hz is important [4]. The interaction be-

tween the spectral and temporal modulations has been conducted by
varying the number of sub-bands in input speech analysis [5]. Here,
it is shown that a combination of spectral and temporal information
is important for human perception of phonemes.

In our previous work [6], we had proposed a feature extraction
technique that combines short-term spectral features and the tempo-
ral modulation features for the task of phoneme recognition. Specif-
ically, speech signals in frequency sub-bands are analyzed over long
temporal segments using the Frequency Domain Linear Prediction
(FDLP) to estimate the Hilbert envelopes. The short-term spectral
features are derived by integrating the sub-band Hilbert envelopes
in short analysis windows and the temporal modulation features are
obtained by the application of cosine transform on the compressed
(static and adaptive compression) long term sub-band Hilbert en-
velopes [6].

In this paper, we propose a noise compensation technique and a
gain normalization technique for FDLP in deriving spectro-temporal
features. For noise compensation, an estimate of the noise enve-
lope is derived from the input noisy speech signal in each sub-band.
This estimate is subtracted from the noisy sub-band envelope before
the application of linear prediction in frequency domain. Once the
FDLP envelopes are estimated, we apply a gain normalization pro-
cedure on the FDLP envelopes which tries to alleviate convolutive
distortions in speech. The application of these techniques improves
the robustness of the proposed features in mismatched train/test con-
ditions.

Experiments are performed on phoneme recognition task in
HTIMIT database [8] (which contains telephone channel recordings
of TIMIT data) using the models trained in clean TIMIT dataset.
We use a hybrid Hidden Markov Model - Artificial Neural Network
(HMM-ANN) phoneme recognition system [9]. The proposed fea-
tures provide considerable improvements in phoneme recognition
accuracies for this task.

The rest of the paper is organized as follows. In Sec. 2, the
FDLP technique for deriving sub-band envelopes is described. The
conversion of these sub-band envelopes into spectral and temporal
features is explained in Sec. 3. Experiments with the proposed fea-
tures for phoneme recognition task are reported in Sec. 4. In Sec. 5,
we conclude with a discussion of the proposed features.

2. FREQUENCY DOMAIN LINEAR PREDICTION

The Hilbert envelope, which is the squared magnitude of the ana-
lytic signal, represents the instantaneous energy of a signal in the
time domain. A discrete time analytic signal, as defined in [11], can
be obtained by forcing the causality of the discrete Fourier trans-
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Fig. 1. Block schematic for the frequency domain linear prediction
(FDLP).
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Fig. 2. Illustration of the all-pole modelling property of FDLP. (a) a
portion of the speech signal, (b) its Hilbert envelope computed using
DFT [11], and (c) all pole model obtained using FDLP.

form (DFT) and by ensuring the orthogonality of real and imaginary
parts. Mathematically, it can be shown that the autocorrelation of
discrete cosine transform (DCT) of the input signal and its discrete
time Hilbert envelope are Fourier transform pairs [7]. This means
that the application of linear prediction on the cosine transform of
the signal yields an AR model of the Hilbert envelope of the signal.
Thus, a parametric model for the Hilbert envelopes can be obtained
using FDLP [2, 7].

Fig. 1 shows the block schematic for the implementation of
FDLP technique. Long segments of the input signal (of the order
of 1000 ms) are transformed into frequency domain using DCT. The
inverse DFT (IDFT) of the DCT coefficients represents the discrete
time analytic signal [7]. Spectral autocorrelations are derived by
the application of DFT on the squared magnitude of analytic signal.
These autocorrelations are used for linear prediction (similar to the
application of TDLP using time domain autocorrelations [10]). In
deriving spectro-temporal features for phoneme recognition, FDLP
is applied on the critical bands of the input speech signal.

Fig. 2 shows the AR modelling property of FDLP. It shows (a) a
portion of speech signal, (b) its Hilbert envelope computed using the
Fourier transform technique [11] and (c) an all pole approximation
for the Hilbert Envelope using FDLP.

2.1. Noise Compensation

When additive noise is present in speech signal, the FDLP enve-
lope is modified in such a way its dynamic range is reduced. The
effect of noise is more pronounced in the valleys of the FDLP en-
velopes, where the mismatch between clean and noisy speech is sig-
nificant. When features are derived from the uncompensated FDLP
envelopes, the performance of the phoneme recognition system de-
grades significantly in noisy conditions.
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Fig. 3. Noise compensation in frequency domain linear prediction.
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Fig. 4. Log-FDLP envelopes for a sub-band of clean speech and
telephone speech (a) without gain normalization and noise compen-
sation, (b) with gain normalization and noise compensation.

We apply noise compensation technique on FDLP as shown in
Fig. 3. A voice activity detector (VAD) operates on the input speech
signal to indicate the presence of non-speech frames. The VAD is
implemented using the same technique proposed in [12]. The VAD
output is a flag indicating the speech/non-speech decision for every
short-term frame of speech (with a length of25 ms and a shift of10

ms).
As mentioned before, long segments of the input speech signal

are transformed to DCT domain. The discrete time analytic signal is
obtained as the magnitude IDFT of the DCT signal. If noise signal is
additive in signal domain, it continues to be additive in the analytic
signal domain. Hence, the effect of noise can be compensated by
short-term noise subtraction on the analytic signal. This is achieved
in two steps. In the first step, we window the analytic signal into
short-term segments (of length25 ms with a shift of10 ms). The
next step is to subtract an estimate of the short-term noise component
derived from non-speech segments (in the initial portion of speech
utterances).

2.2. Gain Normalization

The Hilbert envelope and the spectral autocorrelation function form
Fourier transform pairs [7]. When speech is corrupted by convolu-
tive distortions, the sub-band Hilbert envelopes can be assumed to be
a convolution of the sub-band Hilbert envelope of the clean speech
with the sub-band Hilbert envelope of the noise [13]. This means
that the spectral autocorrelation function of convolutive noise can be
approximated as the multiplication of spectral autocorrelation func-
tion of the clean speech with that of the convolutive noise. Typically,
for long segments of input signal, the spectral autocorrelation func-
tion in frequency sub-bands can be assumed to be slowly varying
compared to that of the speech signal. Thus, normalizing the gain
of the sub-band FDLP envelopes suppresses the multiplicative effect
present in the spectral autocorrelation function of noise [13].

When speech signal is passed through a telephone channel, the
output signal can be modelled as a combination of back-ground addi-
tive noise and a convolutive noise in the channel. In such conditions,
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Fig. 5. Schematic of the joint short-term spectral and temporal mod-
ulation feature extraction technique

the combination of noise compensation and gain normalization pro-
vides considerable robustness to the FDLP technique. This is illus-
trated in Fig. 4, where we plot the log FDLP envelopes for clean and
telephone speech in two conditions, (a) without gain normalization
and noise compensation and (b) with gain normalization and noise
compensation. This figure shows that the application of these tech-
niques reduces the mismatch between the FDLP envelopes extracted
from clean and noisy speech. In the next section, we use the gain
normalized and noise compensated FDLP envelopes for extracting
spectro-temporal features from input speech.

3. SPECTRO-TEMPORAL FEATURE EXTRACTION

3.1. Short-term Spectral Features

As mentioned before, Hilbert envelope represents the instantaneous
energy of a signal in the time domain. Since integration of signal en-
ergy is identical in time and frequency domain, the sub-band Hilbert
envelopes can equivalently be used for obtaining the sub-band en-
ergy based short-term spectral features. This is achieved by inte-
grating the sub-band temporal envelopes in short term frames (of
the order of25 ms with a shift of10 ms). These short term sub-
band energies are then converted into13 cepstral features along with
their first and second derivatives (similar to39 dimensional PLP fea-
tures [1]). Each frame of these short-term spectral features is used
with a context of9 frames for training a phoneme posterior proba-
bility estimator [14].

3.2. Long-term Modulation Features

The long-term sub-band envelopes from the FDLP form a compact
representation of the temporal dynamics over long regions of the
speech signal. The sub-band FDLP envelopes are compressed us-
ing a static compression scheme which is a logarithmic function and
a dynamic compression scheme [15]. The dynamic compression is
realized by an adaptation circuit consisting of five consecutive non-
linear adaptation loops [15]. Each of these loops consists of a divider
and a low-pass filter with time constants ranging from5 ms to500

Table 1. Phoneme Recognition Accuracies (%) in clean speech and
telephone speech (average performance for9 channel conditions).

Feat Clean Tel
PLP 65.4 34.3
ETSI 64.0 47.7

FDLP-S 63.5 52.2
MRASTA 62.8 48.0
FDLP-M 62.3 55.4

PLP+MRASTA 67.5 47.5
ETSI+MRASTA 66.8 52.9

FDLP-S+FDLP-M 66.7 57.9

ms. The input signal is divided by the output signal of the low-pass
filter in each adaptation loop. The compressed temporal envelopes
are divided into200 ms segments with a shift of10 ms. Discrete
Cosine Transform (DCT) is applied on the static and the adaptive
segments to yield the static and the adaptive modulation spectrum re-
spectively. We use14 modulation frequency components from each
cosine transform, yielding modulation spectrum in the0−35 Hz re-
gion with a resolution of2.5 Hz. The static and adaptive modulation
features for each sub-band are stacked together to obtain modula-
tion features for each sub-band and fed to the posterior probability
estimator.

We combine the short-term spectral and modulation frequency
features at the phoneme posterior level using the Dempster Shafer
(DS) theory of evidence [16].

4. EXPERIMENTS AND RESULTS

The proposed features are used for a phoneme recognition task on
the HTIMIT database [8]. We use a phoneme recognition system
based on the Hidden Markov Model - Artificial Neural Network
(HMM-ANN) paradigm [9]. The system is trained on clean speech
using the TIMIT database downsampled to8 kHz. The training data
consists of3000 utterances from375 speakers, cross-validation data
set consists of696 utterances from87 speakers and the test data set
consists of1344 utterances from168 speakers. The TIMIT database,
which is hand-labeled using61 labels is mapped to the standard set
of 39 phonemes [14]. For phoneme recognition experiments in tele-
phone channel, speech data collected from9 telephone sets in the
HTIMIT database [8] are used, which introduce a variety of chan-
nel distortions in the test signal. Each of these telephone channels
consist of842 test utterances, which also have clean recordings in
the TIMIT test set. The system is trained only on the original TIMIT
data, representing clean speech without the distortions introduced by
the communication channel but tested on the clean TIMIT test set as
well as the HTIMIT degraded speech.

Table 1 shows the results for phoneme recognition accuracies for
various feature extraction techniques in clean and telephone speech.
In the base-line experiments, the proposed features are compared
with other feature extraction techniques on the same task - the PLP
features with a9 frame context [14] and Advanced-ETSI (noise-
robust) distributed speech recognition front-end [12] with a9 frame
context which are similar to short-term spectral features derived us-
ing FDLP (FDLP-S) and MRASTA features [17] which are similar
to modulation features derived from FDLP (FDLP-M). We combine
the short-term spectral and modulation frequency features [6] us-
ing the DS theory of evidence to obtain three more feature sets -
PLP features with MRASTA features (PLP+MRASTA), ETSI fea-
tures with MRASTA features (ETSI+MRASTA) and FDLP-S fea-



Table 2. Recognition Accuracies (%) of broad phonetic classes ob-
tained from confusion matrix analysis on TIMIT database

PLP + ETSI + FDLP-S +
Class MRASTA MRASTA FDLP-M
Vowel 87.6 87.5 88.8
Plosive 82.2 81.5 80.9

Fricative 81.8 81.2 79.7
Semi Vowel 75.2 75.5 74.4

Nasal 85.2 84.0 83.6
Avg. 82.4 81.9 81.5

tures with FDLP-M features (FDLP-S+FDLP-M).
The FDLP-S features provide comparable results as the ETSI

features in clean conditions whereas it shows good robustness in
telephone channel conditions. The modulation features (FDLP-M)
result in significant improvements for phoneme recognition rate in
telephone speech compared to the MRASTA features. The joint
short-term spectral and modulation features yield robust phoneme
recognition compared to the baseline systems. We obtain a relative
improvement of10.6 % in telephone speech phoneme recognition.

5. DISCUSSION AND CONCLUSION

The previous section showed that the proposed feature extraction
provides promising phoneme recognition performance on HTIMIT
database. Here, we analyze the improvements in terms of decompo-
sitions into broad phoneme classes using phoneme confusion ma-
trices. Table. 2 and Table. 3 show the recognition accuracies of
broad phoneme classes for the proposed feature extraction tech-
nique along with baseline systems for clean and telephone speech
respectively. For clean conditions, the proposed features (FDLP-
S+FDLP-M) provide recognition accuracies that are competent with
other techniques for all the phoneme classes. For telephone speech,
the FDLP-S features provide significant robustness for fricatives and
vowels (which is due to modelling property of the signal peaks in
FDLP) whereas the FDLP-M features provide good robustness for
plosives (where the fine temporal fluctuations like onsets and off-
sets carry the important phoneme classification information). Hence,
the combination of these feature streams results in considerable im-
provement in performance for most of the broad phonetic classes.

In summary, we have proposed a robust spectro-temporal feature
extraction scheme for ASR. Sub-band Hilbert envelopes, estimated
using FDLP, are processed to derive both short-term spectral and
temporal modulation features. Gain normalization and noise com-
pensation techniques add robustness to FDLP envelopes. These fea-
tures provide considerable improvements for phoneme recognition
tasks in noisy conditions.
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