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Abstract

Frequency domain linear prediction (FDLP) is a technique for
auto-regressive (AR) modeling of Hilbert envelopes of the sig-
nal. The model is derived by the application of linear prediction
on the discrete cosine transform (DCT) of the signal. In this
paper, we propose modifications of the basic FDLP approach
for deriving high resolution envelopes. We determine various
factors which affect temporal resolution in FDLP such as the
location of the input peaks within the analysis segment, type of
window applied in the DCT of the signal, and order of the FDLP
model. This analysis enables us to improve the resolution of
temporal envelopes derived from FDLP. The features extracted
from high resolution envelopes outperform MFCC features in
noisy phoneme recognition experiments (relative improvements
of 10 %) and phoneme recognition in conversational telephone
speech (relative improvements of5 %).
Index Terms: Frequency Domain Linear Prediction, Resolu-
tion Analysis, Feature Extraction, Phoneme Recognition

1. Introduction
Conventionally, time domain linear prediction (TDLP [1]) is
used for AR modeling of power spectrum. Various modifica-
tions in the model estimation can yield different variants of
TDLP [2]. The effect of the TDLP window shape and the
method for computing the AR coefficients were well studied
in [3]. TDLP is still widely used in speech coding and speech
feature extraction (e.g. perceptual linear prediction (PLP) [4].

Frequency domain linear prediction (FDLP) analysis ap-
proximates the Hilbert envelope of the signal by its auto-
regressive model [5, 6]. The sub-band envelopes estimated us-
ing FDLP have been applied for feature extraction in speech
recognition [6, 7]. When speech is corrupted by noise, the low-
energy regions of the speech signal are modified significantly
by noise. A robust feature extraction scheme should aim to fo-
cus only on the high energy regions of the signal. This can be
achieved by the AR modeling procedure appearing in FDLP.
There is also an addition demand of representing the high en-
ergy regions in the noisy signal with good resolution so thatthe
mis-match between the features derived from clean and noisy
conditions is reduced. In the FDLP framework, this corresponds
to estimation of temporal peaks with high resolution. Whileone
would agree that the higher the FDLP model order, the better its
temporal resolution, the effect of various factors on the resolu-
tion was not to our knowledge systematically studied. In par-
ticular, the questions such as whether the temporal resolution is
constant over the whole time interval being analyzed, the effect
of various types of windows on the DCT sequence, and the in-
fluence of various ways of deriving the auto-regressive models,
are still open.

In order to analyze the resolution properties of FDLP, we
need to define an objective measure of resolution. We propose
to define the temporal resolution of FDLP by using synthetic
signals with two closely spaced peaks. The separation between
the peaks is varied and the minimum separation between the two
peaks in the input for which the output of the AR model has two
peaks is determined (critical time-span). Then, the resolution
is computed as the inverse of the critical time-span. We show
the resolution is a function of the relative location of the peaks
within the analysis window, model order, type of LP method
as well as the type of window function used for the analysis.
The results reveal that the temporal resolution is significantly
better in the central part of the analysis segment than it is at
its boundaries. The analysis suggests several modifications of
FDLP which can improve its temporal resolution like symmet-
ric padding of the signal at the boundaries of the analysis win-
dow, suitable window functions and the use of least-squareslin-
ear prediction technique.

When speech is corrupted by noise, temporal envelopes es-
timated from noisy speech do not match those obtained from
clean training conditions. Using the techniques proposed in this
paper, we show that the high resolution estimation of the en-
velopes can reduce this mis-match. In phoneme recognition ex-
periments, the proposed high resolution FDLP features provide
significant improvements in additive noise as well as matched
conditions of conversational telephone speech (CTS).

The rest of the paper is organized as follows. Sec. 2 de-
scribes the FDLP framework for AR modeling of Hilbert en-
velopes. Here, we provide a simple derivation for the relation
between the auto-correlation of DCT and the analytic signal.
The temporal resolution analysis of FDLP is provided in Sec.3.
Phoneme recognition experiments using FDLP features is de-
scribed in Sec. 4, followed by a summary in Sec. 5.

2. AR Model of Hilbert Envelopes

The fundamental relation in TDLP is that the auto-correlation
of a signal and its power spectrum form a Fourier transform
pair. In a dual manner, we show that the auto-correlation of
DCT sequence and the Hilbert envelope (squared magnitude of
analytic signal (AS)) are related by the Fourier transform.This
would mean that the application of linear prediction on the DCT
sequence provides an AR model of the Hilbert envelopes [5, 6]
(similar to the application of linear prediction in time domain
sequence to obtain the power spectrum [3]).

Letxa[n] denote the AS of a discrete sequencex[n] for n =
0, .. , N − 1. We assume that the discrete-time sequencex[n]
has a zero-mean property in time and frequency domains, i.e.,
x[0] = 0 andX[0] = 0. In a discrete-time case, the spectrum



of AS (Xa[k]) can be defined [8] as
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where the constantscn,k = 1 for n, k > 0 andcn,k = 1
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of the index is0 andM = 2N − 1. The DCT defined by Eq. 2
is a scaled version of the original orthogonal DCT with a factor
of 2
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We also define the even-symmetrized versionq[n] of the
input signal,

q[n] =

(

x[n] for n = 0 , .., N − 1

x[M − n] for n = N, ... , M − 1
(3)

A important property ofq[n] is that it has a real spectrum given
by,

Q[k] = 2
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X
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`2πnk
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´

(4)

For signals with the zero-mean property in time and frequency
domains, and using Eq. 2, 4, we get,

y[k] = 2Q[k] (5)

for k = 0, ... , N − 1. Let ŷ denote the zero-padded DCT
with ŷ[k] = y[k] for k = 0, ... , N − 1 and ŷ[k] = 0 for
k = N, ... , M −1. From the definition of Fourier transform of
the analytic signal in Eq. 1, and using the definition of the even
symmetric signal in Eq. 3, we find that,

Qa[k] = ŷ[k] (6)

for k = 0, ... , M − 1. This says that the AS spectrum of the
even-symmetric signal is equal to the zero-padded DCT signal.
In other words, the inverse DFT of the zero-padded DCT sig-
nal is the even-symmetric AS. Now, the auto-correlation of the
DCT sequence is defined as,

ry[τ ] =
1

N

N−1
X

k=|τ |
y[k]y[k − |τ |] (7)

Using Eq. 6 and Eq. 8, it can be shown that,

ry[τ ] =
1

N

M−1
X

n=0

|qa[n]|2e−j 2πnτ

M (8)

i.e., the auto-correlation of the DCT signal and the squaredmag-
nitude (Hilbert envelope) of the even-symmetric AS are Fourier
transform pairs. Thus, we can deduce that the linear prediction
of DCT components results in AR model of the Hilbert enve-
lope of the even-symmetrized signal.
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Figure 1: Plot of125 ms of input signal in time domain (a), (c)
and the corresponding log FDLP envelopes (b), (d).

3. Temporal Resolution in FDLP
In this section, we analyze the temporal resolution in FDLP
models using signals with distinct temporal peaks (impulses).
We use artificial signals for this analysis and compute FDLP
models on the full-band DCT signal (as opposed to sub-band
FDLP models used in speech feature extraction discussed in
Sec. 4). The main factors considered here are the type of the
DCT window, relative position of the temporal peak within the
analysis window, model order for FDLP and type of LP method
used (auto-correlation LP versus least squares LP). Beforewe
discuss the resolution properties of FDLP, we propose an objec-
tive method to determine temporal resolution.

3.1. Defining the Temporal Resolution

We generate a signal with two peaks as shown in Fig. 1(a). The
FDLP envelope of this signal (Fig. 1(c)) is computed by the ap-
plication of linear prediction on DCT components. As seen in
Fig. 1(a),(c), if the input signal has peaks which are far enough,
two distinct peaks emerge in the FDLP envelope. As the spac-
ing between the input peaks is decreased (Fig. 1(b)), the result-
ing peaks in the FDLP envelope start merging (Fig. 1(d)). The
time interval between the two peaks in the input signal below
which the resulting peaks in the FDLP envelope merge to form
a single peak is referred to as the critical time-span. We define
the resolution as the inverse of the critical time-span. In order
to determine the resolution of the FDLP model, we use a peak
picking mechanism on the log FDLP envelope.

In the discussions that follow, the input signal has two dis-
tinct peaks and the interval between the two peaks is varied.
The FDLP envelope for this signal is input to the peak pick-
ing algorithm and the critical time-span is used to calculate the
resolution.

3.2. Effect of Various Factors on Resolution

We analyze the effect of various factors on the temporal resolu-
tion, namely 1) the method of computing the linear prediction
coefficients, 2) different types of window on the DCT signal,
and 3) the FDLP model order. The main aspect of interest is
the variation of the resolution as a function of the locationof
the first peak within the analysis window (Fig. 2) for a125 ms
signal (1000 samples at8 kHz).

As shown in Fig. 2, we find that the resolution is not uni-
form within the analysis window and it is relatively poor at the
boundaries of the analysis window. Fig. 2 (a) shows that the
resolution can be improved by least-squares linear prediction
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Figure 2: Normalized resolution in FDLP as function of the
location of the first peak for a125 ms long signal. (a) Two LP
methods, (b) Various DCT windows, (c) FDLP model order and
(d) symmetric padding at the boundaries.

100 200 300 400 500 600 700

0

20

40

Lo
g 

E
nv

. (
dB

)

(a)

 

 

100 200 300 400 500 600 700

40

60

80

Time (ms)

Lo
g 

E
nv

. (
dB

)

(b)

 

 

Clean
Babble

Clean
Babble

Figure 3: Log FDLP envelopes from clean and noisy (babble at
10 dB) sub-band speech. (a) Low resolution envelopes and (b)
High resolution envelopes.

method replacing the standard auto-correlation method. The
main drawback of the least-squares method is that the result-
ing AR model may be unstable (the roots of the AR polynomial
lying outside the unit-circle). However, as observed in TDLP
studies [3, 2], this can be partially alleviated when the number
of samplesN is significantly larger than model orderp. Fig. 2
(b) shows that the Gaussian window in the DCT domain pro-
vides good temporal resolution among various window types
considered here. An increase in the model order also improves
the resolution as shown in Fig. 2 (c). However, this is not valid
for noisy speech, where we found that increasing the model or-
der beyond a limit tends to degrade the system performance as
the model starts fitting the noisy regions.

In Fig. 2 (d), we provide one possible solution for improv-
ing the resolution at the boundaries of the analysis window.This
is done by symmetric padding of the signal at the beginning and
end of the analysis window. Once the FDLP envelope is de-
rived, the portion of the envelope in the padded regions can be
ignored. This eliminates the lower resolution parts of the FDLP
model and improves the temporal resolution within the region
of interest. We find that about32 ms of padding provides good
resolution at the boundaries.

In order to illustrate the effect of improved resolution in
clean and noisy speech signals, the FDLP envelopes are esti-
mated from sub-band (700-1100Hz) DCT components for clean

Figure 4: Feature extraction using sub-band FDLP models

Cond. MFCC FDLP-LR FDLP-HR
Clean 31.5 31.1 30.9

0 dB 84.8 84.0 78.2
5 dB 77.6 77.9 70.8
10 dB 69.0 68.9 61.9
15 dB 59.1 58.8 52.2
20 dB 49.1 48.6 43.4
Avg. 67.9 67.6 38.7

CTS 46.9 46.7 44.4

Table 1: Phoneme error rates (PER) (%) in clean and noisy con-
dition (Avg. performance over four noises.)

speech and noisy speech (babble noise at10 dB). Fig. 3 (a) and
(b) shows the plot of the envelopes without and with the modi-
fications developed for higher resolution. As seen in this figure,
estimating high resolution envelopes from noisy speech reduces
the mismatch between clean and noisy conditions without mak-
ing any assumptions about the noise.

4. Experiments and Results
We use a phoneme recognition system based on the Hid-
den Markov Model - Artificial Neural Network (HMM-ANN)
paradigm [9] trained on clean speech using the TIMIT database
(16 kHz). The training data consists of3000 utterances from
375 speakers, cross-validation data set consists of696 utter-
ances from87 speakers and the test data set consists of1344
utterances from168 speakers. The TIMIT database, which is
hand-labeled using61 labels is mapped to the standard set of
39 phonemes [10].

For noisy phoneme recognition experiments, we create
noisy version of the test data with additive noise (Babble,
Restaurant, Ex-hall and Subway) at various SNRs (0,5,10,15,20
dB). The ANN models are trained using the clean speech data
and they are tested with noisy and clean versions of the test
data. The baseline features are MFCC features [11] with a9
frame context [10] forming an ANN input vector of dimension
351.

The feature extraction scheme using FDLP is shown in
Fig. 4. Long segments of the input signal (2000 ms segments)
are analyzed using DCT. Gaussian windows that vary in width
and position according to mel perceptual frequency scale are
applied on DCT and linear prediction is performed on the win-
dowed DCT components to obtain the FDLP envelopes on fre-
quency sub-bands. These envelopes are integrated in25 ms
frames with a shift of10 ms to obtain sub-band energy rep-
resentation. The application of logarithm and DCT across sub-
bands provides cepstral features. We derive delta and acceler-
ation features and use a9 frame context on the FDLP features
to yield 351 features at the input of ANN. In order to illustrate
the usefulness of improved temporal resolution in FDLP, we
compare the performance of the FDLP model proposed in this



Clean Speech Noisy Speech
Class MFCC FDLP-HR MFCC FDLP-HR
Vowel 13.4 12.9 14.2 16.1
Plosive 17.3 18.0 91.2 87.4

Semi-Vowel 24.9 25.2 64.9 62.6
Fricative 15.6 15.3 23.0 20.8

Nasal 17.0 17.0 51.4 42.0

Table 2: Broad class phoneme recognition error rate (%) in
clean and noisy condition (babble at10 dB SNR).

work and its earlier implementation [7] (without the proposed
modifications). The old implementation uses auto-correlation
method of LP (75 poles per second per sub-band) and is de-
noted as FDLP-Low-Res (FDLP-LR). For the proposed fea-
tures, we obtain high resolution FDLP envelopes using the pa-
rameters detailed in Sec. 3, namely the application of least-
squares LP method, Gaussian mel-spaced DCT windows, sym-
metric padding at the boundaries and a higher model order (100
poles per second per sub-band). These features are denoted as
FDLP-High-Res (FDLP-HR).

The results for various phoneme recognition experiments
are shown in Table. 1. In these experiments, the FDLP-LR fea-
tures perform similar to the baseline MFCC features in clean
and noisy conditions. The FDLP-HR features provide signif-
icant improvements in noisy conditions (average relative im-
provements of about10 % over the baseline). These improve-
ments are consistent across all SNR levels from0-20 dB. The
results show that an improved resolution in the sub-band FDLP
envelope estimation translates to improvements in phoneme
recognition performance.

We also perform phoneme recognition experiments in
matched telephone channel conditions using large amounts of
conversational telephone speech data (CTS) data [12]. The
training data consists of100 hours of speech, cross-validation
data set consists of30 hours of speech and the test data con-
sists of10 hours of speech. It is labeled using45 phonemes (44
speech classes and1 silence class) obtained by force aligning
the word transcriptions to the previously trained HMM-GMM
models [12]. Here, the ANN consists of5000 hidden neurons,
and45 output neurons (with soft max non-linearity) represent-
ing the phoneme classes. The results of these phoneme recogni-
tion experiments are reported in last row of Table 1. In theseex-
periments, the FDLP-HR features provide noticeable improve-
ments (relative improvements of5 %).

In order to obtain more insight into the observed improve-
ments, we show the broad phonetic class error rate in Table 2.In
clean conditions, the performance for various phoneme classes
are similar for proposed front-end and MFCC features. In the
noisy case (babble noise at10 dB), the FDLP-HR provides no-
ticeable improvements for plosives and nasals, where the fine
temporal representation is important. This table also shows that
noise has adverse effects on certain phoneme classes like semi-
vowels, nasals and plosives as opposed to vowels and fricatives.

The improvements reported here are obtained without any
assumptions about the noise or distortions. For instance, spec-
tral subtraction and gain normalization techniques can be ap-
plied with the FDLP feature to improve the performance in
noise [13]. Similarly, other noise compensation techniques can
be applied along with the baseline MFCC features to improve
the performance. In future, we plan to apply some of these
techniques in addition to the high resolution envelopes reported
here.

5. Summary
We have analyzed the temporal resolution properties in FDLP
envelope. Our analyzes show that the resolution is not uniform
across the temporal segment and a higher resolution is obtained
at the center of the window. In order to improve the temporal
resolution of FDLP, we suggest several techniques like the use
of Gaussian DCT window, least-squares method of LP estima-
tion and symmetric padding at the boundaries. These meth-
ods improve the resolution of the FDLP envelopes in clean
and noisy conditions. Phoneme recognition experiments using
noisy speech show noticeable improvements with higher reso-
lution FDLP models.
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