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Abstract

Frequency domain linear prediction (FDLP) is a technique fo
auto-regressive (AR) modeling of Hilbert envelopes of tite s
nal. The model is derived by the application of linear prédic

on the discrete cosine transform (DCT) of the signal. In this
paper, we propose modifications of the basic FDLP approach
for deriving high resolution envelopes. We determine vasio
factors which affect temporal resolution in FDLP such as the
location of the input peaks within the analysis segment tyjp
window applied in the DCT of the signal, and order of the FDLP
model. This analysis enables us to improve the resolution of
temporal envelopes derived from FDLP. The features excact
from high resolution envelopes outperform MFCC features in
noisy phoneme recognition experiments (relative improets

of 10 %) and phoneme recognition in conversational telephone
speech (relative improvements ©P6).

Index Terms: Frequency Domain Linear Prediction, Resolu-
tion Analysis, Feature Extraction, Phoneme Recognition

1. Introduction

Conventionally, time domain linear prediction (TDLP [1P i
used for AR modeling of power spectrum. Various modifica-
tions in the model estimation can yield different varianfs o
TDLP [2]. The effect of the TDLP window shape and the
method for computing the AR coefficients were well studied
in [3]. TDLP is still widely used in speech coding and speech
feature extraction (e.g. perceptual linear predictionRPl4].
Frequency domain linear prediction (FDLP) analysis ap-
proximates the Hilbert envelope of the signal by its auto-
regressive model [5, 6]. The sub-band envelopes estimated u
ing FDLP have been applied for feature extraction in speech
recognition [6, 7]. When speech is corrupted by noise, the lo
energy regions of the speech signal are modified signifigantl
by noise. A robust feature extraction scheme should aim-to fo
cus only on the high energy regions of the signal. This can be
achieved by the AR modeling procedure appearing in FDLP.
There is also an addition demand of representing the high en-
ergy regions in the noisy signal with good resolution so that
mis-match between the features derived from clean and noisy
conditions is reduced. In the FDLP framework, this corresiso
to estimation of temporal peaks with high resolution. Wibite
would agree that the higher the FDLP model order, the bdter i
temporal resolution, the effect of various factors on treohe-
tion was not to our knowledge systematically studied. In par
ticular, the questions such as whether the temporal résolig
constant over the whole time interval being analyzed, tfexef
of various types of windows on the DCT sequence, and the in-
fluence of various ways of deriving the auto-regressive nsde
are still open.
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In order to analyze the resolution properties of FDLP, we
need to define an objective measure of resolution. We propose
to define the temporal resolution of FDLP by using synthetic
signals with two closely spaced peaks. The separation leetwe
the peaks is varied and the minimum separation between the tw
peaks in the input for which the output of the AR model has two
peaks is determined (critical time-span). Then, the re&wiu
is computed as the inverse of the critical time-span. We show
the resolution is a function of the relative location of treaks
within the analysis window, model order, type of LP method
as well as the type of window function used for the analysis.
The results reveal that the temporal resolution is signitiga
better in the central part of the analysis segment than it is a
its boundaries. The analysis suggests several modificatibn
FDLP which can improve its temporal resolution like symmet-
ric padding of the signal at the boundaries of the analysis wi
dow, suitable window functions and the use of least-squares
ear prediction technique.

When speech is corrupted by noise, temporal envelopes es-
timated from noisy speech do not match those obtained from
clean training conditions. Using the techniques proposetis
paper, we show that the high resolution estimation of the en-
velopes can reduce this mis-match. In phoneme recognixion e
periments, the proposed high resolution FDLP featuresigeov
significant improvements in additive noise as well as matche
conditions of conversational telephone speech (CTS).

The rest of the paper is organized as follows. Sec. 2 de-
scribes the FDLP framework for AR modeling of Hilbert en-
velopes. Here, we provide a simple derivation for the refati
between the auto-correlation of DCT and the analytic signal
The temporal resolution analysis of FDLP is provided in Sec.
Phoneme recognition experiments using FDLP features is de-
scribed in Sec. 4, followed by a summary in Sec. 5.

2. AR Model of Hilbert Envelopes

The fundamental relation in TDLP is that the auto-correlati

of a signal and its power spectrum form a Fourier transform
pair. In a dual manner, we show that the auto-correlation of
DCT sequence and the Hilbert envelope (squared magnitude of
analytic signal (AS)) are related by the Fourier transfofirhis
would mean that the application of linear prediction on tl&D
sequence provides an AR model of the Hilbert envelopes [5, 6]
(similar to the application of linear prediction in time damn
sequence to obtain the power spectrum [3]).

Letz,[n] denote the AS of a discrete sequengte] for n =
0, .., N — 1. We assume that the discrete-time sequerjeé
has a zero-mean property in time and frequency domains, i.e.
z[0] = 0 andX[0] = 0. In a discrete-time case, the spectrum



of AS (X, [k]) can be defined [8] as

<k< X
Xo[k] = 2X k] for(?vfkf 5 )
0 forg +1<k<N
The type-l odd DCTy[k] of a signal fork =0, ... ,N — 1
is defined as
2 k
_4chkx cos 7;\;) 2

where the constants, , = 1 forn,k > 0 andc,, = 3 for
n,k =0andc,; = % for the values of, k, where only one
of the index i andM = 2N — 1. The DCT defined by Eq. 2
is a scaled version of the original orthogonal DCT with adact
of 2v/M.

We also define the even-symmetrized version| of the
input signal,

_Jz[n]
aln] = {x[M —n]

A important property ofj[n] is that it has a real spectrum given
by,

N -1
M—-1

forn=0,..,

forn=N, ..., ®)

Qk] =2 i x[n] cos (27;\7;k

) 4

For signals with the zero-mean property in time and frequenc
domains, and using Eq. 2, 4, we get,

y[k] = 2QI[K] (5)

fork =0, ... ,N —1. Lety denote the zero-padded DCT
with g[k] = y[k] for & = 0, — 1 andg[k] = 0 for
k=N, ...,M—1. Fromthe definitlon of Fourier transform of
the analytic signal in Eg. 1, and using the definition of therev
symmetric signal in Eq. 3, we find that,

Qalk] = g[k] (6)

fork =0, ... ,M — 1. This says that the AS spectrum of the
even-symmetric signal is equal to the zero-padded DCT kigna
In other words, the inverse DFT of the zero-padded DCT sig-
nal is the even-symmetric AS. Now, the auto-correlationhef t
DCT sequence is defined as,
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Using Eqg. 6 and Eq. 8, it can be shown that,

M-—-1

=¥ Z lga e~ “H” ®)

i.e., the auto-correlation of the DCT signal and the squerag-
nitude (Hilbert envelope) of the even-symmetric AS are kgur
transform pairs. Thus, we can deduce that the linear piiedict
of DCT components results in AR model of the Hilbert enve-
lope of the even-symmetrized signal.
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Figure 1: Plot ofl25 ms of input signal in time domain (a), (c)
and the corresponding log FDLP envelopes (b), (d).

3. Temporal Resolution in FDLP

In this section, we analyze the temporal resolution in FDLP
models using signals with distinct temporal peaks (imm)lse
We use artificial signals for this analysis and compute FDLP
models on the full-band DCT signal (as opposed to sub-band
FDLP models used in speech feature extraction discussed in
Sec. 4). The main factors considered here are the type of the
DCT window, relative position of the temporal peak withireth
analysis window, model order for FDLP and type of LP method
used (auto-correlation LP versus least squares LP). Befere
discuss the resolution properties of FDLP, we propose agrebj
tive method to determine temporal resolution.

3.1. Defining the Temporal Resolution

We generate a signal with two peaks as shown in Fig. 1(a). The
FDLP envelope of this signal (Fig. 1(c)) is computed by the ap
plication of linear prediction on DCT components. As seen in
Fig. 1(a),(c), if the input signal has peaks which are farueym

two distinct peaks emerge in the FDLP envelope. As the spac-
ing between the input peaks is decreased (Fig. 1(b)), thatres
ing peaks in the FDLP envelope start merging (Fig. 1(d)). The
time interval between the two peaks in the input signal below
which the resulting peaks in the FDLP envelope merge to form
a single peak is referred to as the critical time-span. Wendefi
the resolution as the inverse of the critical time-span. roleo

to determine the resolution of the FDLP model, we use a peak
picking mechanism on the log FDLP envelope.

In the discussions that follow, the input signal has two dis-
tinct peaks and the interval between the two peaks is varied.
The FDLP envelope for this signal is input to the peak pick-
ing algorithm and the critical time-span is used to caleutae
resolution.

3.2. Effect of Various Factors on Resolution

We analyze the effect of various factors on the temporallveso
tion, namely 1) the method of computing the linear predittio
coefficients, 2) different types of window on the DCT signal,
and 3) the FDLP model order. The main aspect of interest is
the variation of the resolution as a function of the locatin
the first peak within the analysis window (Fig. 2) fod25 ms
signal (L000 samples a8 kHz).

As shown in Fig. 2, we find that the resolution is not uni-
form within the analysis window and it is relatively poor het
boundaries of the analysis window. Fig. 2 (a) shows that the
resolution can be improved by least-squares linear priedict



(@)

—Auto. Corr. LP
---Least Squares LP|

— Rect. ‘
- - -Hamming|

Rect. Win p=4
p=4

Resolution
o
N
Resolution
°
=

o

20 60 80 100 20 40 60 80 100 120
Loc. (ms) Loc. (ms)

(d

°
g
a
°
9
a

Resolution
°
&
Resolution
o
o

-~~No Pad %)
» Pad 16ms| Gauss. Win "]
—Pad 32ms| p=8 k

°
B

Gauss. Win

40 80 100 120 0 20 40 80 100 120

Logo(ms) Lo?o(ms)
Figure 2: Normalized resolution in FDLP as function of the
location of the first peak for @25 ms long signal. (a) Two LP
methods, (b) Various DCT windows, (c¢) FDLP model order and
(d) symmetric padding at the boundaries.
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Figure 3: Log FDLP envelopes from clean and noisy (babble at
10 dB) sub-band speech. (a) Low resolution envelopes and (b)
High resolution envelopes.

method replacing the standard auto-correlation methode Th
main drawback of the least-squares method is that the result
ing AR model may be unstable (the roots of the AR polynomial
lying outside the unit-circle). However, as observed in TOL
studies [3, 2], this can be partially alleviated when the ham
of samplesV is significantly larger than model order Fig. 2
(b) shows that the Gaussian window in the DCT domain pro-
vides good temporal resolution among various window types
considered here. An increase in the model order also imgrove
the resolution as shown in Fig. 2 (c). However, this is notdval
for noisy speech, where we found that increasing the model or
der beyond a limit tends to degrade the system performance as
the model starts fitting the noisy regions.

In Fig. 2 (d), we provide one possible solution for improv-
ing the resolution at the boundaries of the analysis winddvis
is done by symmetric padding of the signal at the beginniry an
end of the analysis window. Once the FDLP envelope is de-
rived, the portion of the envelope in the padded regions @n b
ignored. This eliminates the lower resolution parts of tbd.P
model and improves the temporal resolution within the regio
of interest. We find that abod2 ms of padding provides good
resolution at the boundaries.

In order to illustrate the effect of improved resolution in
clean and noisy speech signals, the FDLP envelopes are esti-
mated from sub-band(0-1100Hz) DCT components for clean
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Figure 4: Feature extraction using sub-band FDLP models

Cond. | MFCC | FDLP-LR [ FDLP-HR
Clean| 315 311 30.9
0dB | 8438 84.0 782
5dB | 77.6 77.9 70.8
10dB | 69.0 68.9 61.9
15dB | 59.1 58.8 52.2
20dB | 49.1 48.6 43.4
Avg. | 67.9 67.6 38.7
[CTS | 469 | 467 | 444 |

Table 1: Phoneme error rates (PER) (%) in clean and noisy con-
dition (Avg. performance over four noises.)

speech and noisy speech (babble nois@aiB). Fig. 3 (a) and
(b) shows the plot of the envelopes without and with the modi-
fications developed for higher resolution. As seen in thisrég
estimating high resolution envelopes from noisy speechaesl
the mismatch between clean and noisy conditions without mak
ing any assumptions about the noise.

4. Experiments and Results

We use a phoneme recognition system based on the Hid-
den Markov Model - Atrtificial Neural Network (HMM-ANN)
paradigm [9] trained on clean speech using the TIMIT databas
(16 kHz). The training data consists 8000 utterances from
375 speakers, cross-validation data set consist§96f utter-
ances from87 speakers and the test data set consists3dft
utterances from 68 speakers. The TIMIT database, which is
hand-labeled using1 labels is mapped to the standard set of
39 phonemes [10].

For noisy phoneme recognition experiments, we create
noisy version of the test data with additive noise (Babble,
Restaurant, Ex-hall and Subway) at various SNR%10,15,20
dB). The ANN models are trained using the clean speech data
and they are tested with noisy and clean versions of the test
data. The baseline features are MFCC features [11] with a
frame context [10] forming an ANN input vector of dimension
351.

The feature extraction scheme using FDLP is shown in
Fig. 4. Long segments of the input signab(0 ms segments)
are analyzed using DCT. Gaussian windows that vary in width
and position according to mel perceptual frequency scae ar
applied on DCT and linear prediction is performed on the win-
dowed DCT components to obtain the FDLP envelopes on fre-
guency sub-bands. These envelopes are integrat@d ims
frames with a shift ofl0 ms to obtain sub-band energy rep-
resentation. The application of logarithm and DCT acro$s su
bands provides cepstral features. We derive delta andexecel
ation features and use%frame context on the FDLP features
to yield 351 features at the input of ANN. In order to illustrate
the usefulness of improved temporal resolution in FDLP, we
compare the performance of the FDLP model proposed in this



Clean Speech Noisy Speech

Class MFCC | FDLP-HR | MFCC | FDLP-HR
Vowel 13.4 12.9 14.2 16.1
Plosive 17.3 18.0 91.2 87.4
Semi-Vowel | 24.9 25.2 64.9 62.6
Fricative 15.6 15.3 23.0 20.8
Nasal 17.0 17.0 51.4 42.0

Table 2: Broad class phoneme recognition error rate (%) in
clean and noisy condition (babbleldt dB SNR).

work and its earlier implementation [7] (without the propds
modifications). The old implementation uses auto-con@fat
method of LP {5 poles per second per sub-band) and is de-
noted as FDLP-Low-Res (FDLP-LR). For the proposed fea-
tures, we obtain high resolution FDLP envelopes using the pa
rameters detailed in Sec. 3, namely the application of {east
squares LP method, Gaussian mel-spaced DCT windows, sym-
metric padding at the boundaries and a higher model oddr (
poles per second per sub-band). These features are dersoted a
FDLP-High-Res (FDLP-HR).

The results for various phoneme recognition experiments
are shown in Table. 1. In these experiments, the FDLP-LR fea-
tures perform similar to the baseline MFCC features in clean
and noisy conditions. The FDLP-HR features provide signif-
icant improvements in noisy conditions (average relative i
provements of aboutO % over the baseline). These improve-
ments are consistent across all SNR levels ffe20 dB. The
results show that an improved resolution in the sub-bandFDL
envelope estimation translates to improvements in phoneme
recognition performance.

We also perform phoneme recognition experiments in
matched telephone channel conditions using large amotints o
conversational telephone speech data (CTS) data [12]. The
training data consists af00 hours of speech, cross-validation
data set consists &0 hours of speech and the test data con-
sists of10 hours of speech. Itis labeled using phonemes44
speech classes andsilence class) obtained by force aligning
the word transcriptions to the previously trained HMM-GMM
models [12]. Here, the ANN consists 8000 hidden neurons,
and45 output neurons (with soft max non-linearity) represent-
ing the phoneme classes. The results of these phoneme recogn
tion experiments are reported in last row of Table 1. In these
periments, the FDLP-HR features provide noticeable imgrov
ments (relative improvements 6%).

In order to obtain more insight into the observed improve-
ments, we show the broad phonetic class error rate in Talte 2.
clean conditions, the performance for various phonemesekas
are similar for proposed front-end and MFCC features. In the
noisy case (babble noise i dB), the FDLP-HR provides no-
ticeable improvements for plosives and nasals, where tlge fin
temporal representation is important. This table also shibat
noise has adverse effects on certain phoneme classesttile se
vowels, nasals and plosives as opposed to vowels and ¥esati

The improvements reported here are obtained without any
assumptions about the noise or distortions. For instampes-s
tral subtraction and gain normalization techniques cange a
plied with the FDLP feature to improve the performance in
noise [13]. Similarly, other noise compensation technigeen
be applied along with the baseline MFCC features to improve
the performance. In future, we plan to apply some of these
techniques in addition to the high resolution envelopesntep
here.

5. Summary

We have analyzed the temporal resolution properties in FDLP
envelope. Our analyzes show that the resolution is not tmifo
across the temporal segment and a higher resolution isnaatai

at the center of the window. In order to improve the temporal
resolution of FDLP, we suggest several techniques like gge u
of Gaussian DCT window, least-squares method of LP estima-
tion and symmetric padding at the boundaries. These meth-
ods improve the resolution of the FDLP envelopes in clean
and noisy conditions. Phoneme recognition experimentsgusi
noisy speech show noticeable improvements with higher-reso
lution FDLP models.
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