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Abstract

Speaker recognition in noisy environments is challenging when
there is a mis-match in the data used for enrollment and veri-
fication. In this paper, we propose a robust feature extraction
scheme based on spectro-temporal modulation filtering using
two-dimensional (2-D) autoregressive (AR) models. The first
step is the AR modeling of the sub-band temporal envelopes
by the application of the linear prediction on the sub-band dis-
crete cosine transform (DCT) components. These sub-band en-
velopes are stacked together and used for a second AR mod-
eling step. The spectral envelope across the sub-bands is ap-
proximated in this AR model and cepstral features are derived
which are used for speaker recognition. The use of AR models
emphasizes the focus on the high energy regions which are rel-
atively well preserved in the presence of noise. The degree of
modulation filtering is controlled using AR model order param-
eter. Experiments are performed using noisy versions of NIST
2010 speaker recognition evaluation (SRE) data with a state-
of-art speaker recognition system. In these experiments, the
proposed features provide significant improvements compared
to baseline features (relative improvement20%o in terms of
equal error rate (EER) amgb % in terms of miss rate &0 %

false alarm).

Index Terms: Rate-Scale Filtering, Autoregressive Modeling,
Speaker Recognition, Robust Feature Extraction.

1. Introduction

Speech technology works reasonably in matched conditions but
rapidly degrades when there is acoustic mis-match between the
training and test conditions. Although multi-condition training
can improve the performance [1], realistic scenarios can benefit
from more robustness without requiring training data from the
target acoustic environment. In this paper, we develop a feature
extraction scheme which attempts to address robustness in noisy
and reverberant environments.

In the past, various feature processing techniques like spec-
tral subtraction [2], Wiener filtering [3] and missing data recon-
struction [4] have been developed for noisy speech recognition
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modeled [9]. In general, an autoregressive (AR) modeling ap-
proach represents high energy regions with good modeling ac-
curacy [10, 11]. The AR modeling approach of signal spectra is
widely used for feature extraction of speech [12]. The AR mod-
eling of Hilbert envelopes [16, 17] have been used with similar
goals of preserving peaks in sub-band temporal envelopes and
has been successfully applied for speaker verification [27]. 2-
D AR modeling was originally proposed for speech recognition
by alternating the AR models between spectral and temporal
domains [14].

In this paper, we extend our previous approach on two di-
mensional AR modeling [15] with a modulation filtering frame-
work. Long segments of the input speech signal are decom-
posed into sub-bands and linear prediction is applied on the
sub-band discrete cosine transform (DCT) components to de-
rive Hilbert envelopes [16]. The sub-band envelopes are stacked
together to form a time-frequency description and a second AR
model is applied across the sub-bands for each short-term frame
(25 ms with a shift of10ms). The output of the second AR
model is converted to cepstral coefficients and used for speaker
recognition. Modifying either of the AR models, time domain
one or the frequency domain one, represents in effect a rate-
scale (time-frequency) modulation filtering [18]. The time do-
main AR model does the rate filtering and the frequency domain
AR model does the scale filtering, similar to the approaches dis-
cussed in [19].

Experiments are performed on core conditions of NIST
2010 SRE data [20] with various artificially added noise and
reverberation. In these experiments, the proposed features pro-
vides considerable improvements compared to the conventional
features. The rest of the paper is organized as follows. Sec. 2
details the proposed feature extraction scheme using 2-D AR
models. This is followed by a discussion of various rate-scale
feature streams derived from this framework (Sec. 3.1). Sec. 4
describes the experiments on the NIST 2010 SRE. In Sec. 5, we
conclude with a brief discussion of the proposed front-end.

2. Feature Extraction

The block schematic for the proposed feature extraction is

applications. Feature compensation techniques have also been shown in Fig. 1. Long segments of the input speech sigita (

used in the past for speaker verification systems (feature warp-
ing [5], RASTA processing [6] and cepstral mean subtraction
(CMS) [7]). With noise or reverberation, the low energy val-
leys of speech signal have the worst signal to noise ratio (SNR),
while the high energy regions are robust and could be well
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of non-overlapping windows) are transformed using a discrete
cosine transform [27]. The full-band DCT signal is windowed
into a set 0f96 over-lapping linear sub-bands in the frequency
range ofl 25-3700 Hz. In each sub-band, linear prediction is ap-
plied on the sub-band DCT components to estimate an all-pole
representation of Hilbert envelope [16, 17]. This constitutes the
temporal AR modeling stage. The FDLP envelopes from vari-
ous sub-bands are stacked together to obtain a two-dimensional
representation as shown in Fig. 1.

The sub-band envelopes are integrated in short-term frames
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Figure 1:Block schematic of the proposed feature extraction using spectro-temporal AR Models.
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Figure 2: A portion of the speech signal in (a), and its spectro-
graphic representation with different resolutions obtained using
spectro-temporal AR model in (b) low model order in both di-
mensions and (c) high model order in both dimensions.

(25ms with a shift ofl0ms). The output of the integration pro-
cess provides an estimate of the power spectrum of signal in the
short-term frame level. The frequency resolution of this power
spectrum is equal to the initial sub-band decompositiofitof
bands. These power spectral estimates are transformed to tem-
poral autocorrelation estimates using inverse Fourier transform
and the resulting autocorrelation sequence is used for time do-
main linear prediction (TDLP). We derivé3 cepstral coeffi-
cients from the all-pole approximation of ti# point short-
term power spectrum. The delta and acceleration coefficients
are extracted to obtai3d dimensional features.

3. Properties of 2-D AR Models
3.1. Rate-Scale filtering using AR Models

A temporal modulation filter is referred to as a rate filter and

a spectral modulation filter is referred to as a scale filter [19].
In the proposed feature extraction framework, the AR modeling
process represents a filter impulse response, whose frequency
response (“time response” in the case of the temporal AR fil-
ter) can be controlled by the model order. A lower model order
represents more smoothing in a given domain , while the higher
model captures finer details . Thus, various streams of spec-
trographic representations can be generated from the proposed
framework using different choices of model order for temporal
and spectral AR models as shown in Fig. 2. The low-rate low-
scale representations represent broad energy variations in the
signal as seenin Fig. 2 (b). The other configuration using higher
order for the AR models is shown in Fig. 2 (¢c) where more de-
tails about the various events in the spectrogram are evident. A

higher order could also mean that such AR models may carry
information about noise or reverberation artifacts that is present
in the finer details of the spectrogram in its spectral or temporal
directions.

In addition to the configurations shown in Fig. 2, other pos-
sibilities include a lower model order for temporal AR model
with a higher order for the spectral AR model and vice-versa.
Thus, various feature streams which differ in the extent of mod-
ulations can be derived from the spectro-temporal AR model
framework. In Sec. 4, we provide some experiments showing
the effect of model order on the speaker recognition perfor-
mance.

3.2. Robustness to Noise

When a speech signal is corrupted with noise or reverberation,
the valleys in the sub-band envelopes are dominated by noise.
Even with moderate amounts of distortion, the low-energy re-
gions are substantially modified and cause acoustic mis-match
with the clean training data. Since the AR modeling tends to fit
the high energy regions with good accuracy [11], the spectro-
temporal AR modeling approach described in Sec. 2 could be
more robust to noise and reverberation artifacts. This is illus-
trated in Fig. 3 where we plot a portion of clean speech signal,
speech with additive noise (babble noisel@tdB SNR) and
speech with artificial reverberation (reverberation time366

ms). The spectrographic representation obtained from mel fre-
quency representation is shown in the second panel and the cor-
responding representation obtained from spectro-temporal AR
models is shown in the bottom panel. In comparison with the
mel spectrogram, the representation obtained from AR model-
ing emphasizes the high energy regions. Thus, such a represen-
tations can be more similar for the clean and the noisy versions
of the same signal. This is desirable and contributes to improved
robustness when these features are used for speaker recognition
in noisy environments.

4. Experiments and Results

The proposed features are used for speaker recognition using
the core conditions of the NIST 2010 speaker recognition eval-
uation (SRE) [20]. The baseline features consist®flimen-
sional MFCC features [8] containint cepstral coefficients,
their delta and acceleration components. These features are
computed or25ms frames of speech signal with a shiftl@ims.

We use37 Mel-filters in the frequency range df25-3700 Hz

for the baseline features.

We use a GMM-UBM based speaker verification sys-
tem [22]. The input speech features are feature warped [5]
which forms a normalization of the mean,variance and higher
order moments. Gender dependent GMMs wit24 mixture
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Figure 3:Comparison of spectrographic representations obtained from clean speech, noisy speech (babble noise at 10 dB) and rever-
berant speech (reverberation time of 300 ms for the mel-spectrogram and the proposed 2-D AR model spectrogram.

components are trained on the development data. The develop-
ment data set consists of a combination of audio from the NIST
2004 speaker recognition database, the Switchboard Il Phase
3 corpora, the NIST 2006 speaker recognition database, and
the NISTO8 interview development set. There 4824 male
recordings an®461 female recordings in development set.

Once the UBM is trained, the mixture component means
are MAP adapted and concatenated to form supervectors. We
use the i-vector based factor analysis technique [23] on these
supervectors in a gender dependent manner. For the factor anal-
ysis training, we use the development data from Switchboard I,
Phases 2 and 3; Switchboard Cellular, Parts 1 and 2, NIST04-
05 and extended NISTO8 far-field data. There Hr¢30 male
recordings an@1320 female recordings in this sub-space train-
ing set. Gender specific i-vectors @50 dimensions are ex-
tracted and these are used to train a PLDA system [24]. The
output scores are obtained using dimensional PLDA sub-
space for each gender.

For evaluating the robustness of these features in noisy con-
ditions, the test data for Cond-2 is corrupted using (a) babble
noise, (b) exhibition hall noise, and (c) restaurant noise from
the NOISEX-92 database, each resulting in speech at 5, 10,
15 and 20 dB SNR. These noises are added using the FaNT
tool [25]. For simulating reverberant recording conditions, we
also convolve the test data for Cond.-2 with three artificial room
responses [26] with reverberation timeldf0, 300 and600 ms.
Cond-2 has interview microphone recordings with the highest
number of trials among NIST 2010 core conditio@s3M) and
it contains2402 enroliment recordings an@d201 test record-
ings. In our experiments, the enroliment data consists of “clean”

Table 1: EER (%) clean and noisy version (babble dB SNR

for Cond.-2 of NIST 2010 SRE for baseline MFCC features and

2-D AR features for various choices of model order for temporal

AR model in terms of poles per sec (pps) and spectral AR model

in terms of poles per frame (ppf).

Feat. Clean | Noisy

MFCC 3.0 12.5

2-D AR (10pps, 6ppf) 4.8 154
2-D AR (90pps, 6ppf) 3.7 14.4
2-D AR (10pps, 24ppf)|| 4.0 12.8
2-D AR (90pps, 24ppf)|| 2.7 10.5
2-D AR (30pps, 12ppf)|| 2.7 9.8
2-D AR (60pps, 12ppf)|| 2.8 9.7
2-D AR (15pps, 12ppf)|| 3.0 114
2-D AR (30pps, 18ppf)|| 2.6 10.2

The performance metric used is the EER (%) and the false-
alarm rate at a miss-rate of % (Miss10). The initial set of ex-
periments discuss the selection of model order using the clean
data for Cond.-2 as well as validation data from babble noise
at5 dB SNR. This choice of validation data was not optimized
in any manner and the performance on other types of noise and
SNR levels relates to the generalization of the parameter selec-
tion process. The results for various choices of model order
(described in terms of number of peaks per second for tempo-
ral model or number peaks per frame across all bands for the
spectral AR model) is shown in Table. 1.

Based on the results provided in Table. 1, we select a model

speech data presentin NIST 2010 and the test data may be clean order of30 poles per sec (pps) for the temporal AR model and
speech data or noisy data. The voice-activity decisions provided an order ofl2 poles per frame (ppf) for the spectral AR model.
by NIST are used in these experiments. The GMM-UBM, i-  The comparison of the performance for various noisy and rever-
vector and the PLDA sub-spaces trained from the development berant conditions (average of three types of noise) for the base-
data are used without any modification. line features as well as the 2-D AR features is shown in Fig. 4.
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Figure 4: Average performance over three types of noise (Babble, Restaurant, Exhall) and three reverberant room responses (with
reverberation time of 100, 300 and 600 ms) in terms of EER (%) and False Alarm (%) at 10% Miss Rate (Miss10) for core condition 2.

Table 2: EER (%) and False Alarm (%) at 10% Miss Rate (Miss10) in pagaathfor core evaluation conditions in NIST 2010 SRE.

Cond. MFCC-baseline| FDLP | 2-D AR Feat.

1. Int.mic - Int.mic-same-mic. 2.0(0.1) 2.1(0.1) 1.9(0.1)

2. Int.mic - Int.mic-diff.-mic. 3.0(0.4) 2.9(0.5) 2.7 (0.4)

3. Int.mic - Phn.call-tel 3.9(1.1) 3.6 (0.8) 3.8(0.9)

4. Int.mic - Phn.call-mic 3.3(0.5) 2.8(0.3) 2.9(0.3)

5. Phn.call - Phn.call-diff.-tel 2.9(0.4) 2.9 (0.6) 3.8(0.9)

6. Phn-call - Phn.call-high-vocal-effort-te 4.3(1.5) 5.1(2.2) 5.1(2.4)
7. Phn-call - Phn.call-high-vocal-effort-mig 7.6 (4.9) 5.8(2.5) 4.7 (2.2)
8. Phn-call - Phn.call-low-vocal-effort-tel 2.1(0.3) 2.6 (0.5) 2.8 (0.6)
9. Phn-call - Phn.call-low-vocal-effort-mig 2.1(0.2) 2.1(0.2) 1.8(0.1)

Table 3: False Alarm (%) at 10% Miss Rate (Miss10) for eval-
uation conditions in IARPA BEST 2011 task.

Cond. MFCC | 2-D AR Feat.
1. Int.mic - Int.mic-noisy. 155 11.3
2. Int.mic - Phn-call-mic 3.7 2.8
3. Int.mic - Phn.call-tel 3.3 2.8
4. Phn-call-mic - Phn.call-mig| 7.4 6.7
5. Phn.call-mic - Phn.call-tel 7.5 6.3
6. Phn.call-tel - Phn.call-tel 1.3 1.8

We also compare these results the FDLP features which in-
volves one dimensional temporal AR model [27] and the power
normalized cepstral coefficients (PNCC) [28]. The PNCC fea-
tures provide improvements over the baseline MFCC features
on low SNR additive noise conditions. However, on all the

noise types and reverberant conditions, the proposed approach

improves over the other feature extraction methods considered
here. On the average, the proposed features provide ab&at
relative Miss10 improvement over the baseline MFCC system.
These improvements are mainly due to the robust representa-
tion of the high energy regions by 2-D AR modeling and the
rate-scale modulation filtering.

In the next set of experiments, we compare the proposed
2-D AR model features for all the core conditions in NIST
2010 SRE. These results are reported in Table 2. From these
results, it can be seen that the proposed 2-D features provides
good improvements in mis-matched far-field microphone con-
ditions like Cond. 1,2 7 and 9). In these conditions the mod-
eling of high-energy regions in time-frequency domain is ben-
eficial. However, the baseline MFCC system performs well in
telephone channel matched conditions (Cond. 5, 6 and 8). The
degradation in Cond. 5, 6 and 8 may be attributed to the reduced
resolution caused by the 2-D AR modeling. In the final set of

experiments, we measure the speaker verification performance
using the IARPA BEST 2011 data [29]. The database contains
83198 recordings £5822 enrollment utterances arid 376 test
utterances) with a wide-variety of intrinsic and extrinsic vari-
abilities like language, age, noise and reverberation. There are
38M trials which are split into various conditions as shown
in Table 3. Condition 1 contains majority of the triaB0M
trials) recorded using interview microphone data with varying
amounts of additive noise and artificial reverberation.

The performance (Miss10) for the baseline MFCC system
is compared with proposed features in Table 3. In these exper-
iments, the proposed features provide noticeable improvements
for all conditions except the matched telephone scenario (Cond.
6). On the average, the proposed features provide improvements
of about18% in the Miss10 metric relative to the baseline.

5. Summary

In this paper, we have proposed a two-dimensional autoregres-
sive model for robust speaker recognition. An initial tempo-
ral AR model is derived from long segments of the speech sig-
nal. This model provides Hilbert envelopes of sub-band speech
which are integrated in short-term frames to obtain power spec-
tral estimates. The estimates are used for a spectral AR mod-
eling process and the output prediction coefficients are used for
speaker recognition. Various experiments are performed with
noisy test data on NIST 2010 SRE where the proposed features
provide significant improvements. These results are also vali-
dated using a large speaker recognition dataset from BEST. The
results are promising and encourage us to pursue the problem
of joint 2-D AR modeling instead of a separable time and fre-
quency linear prediction schemes adopted in this paper.
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