
FEATURE NORMALIZATION FOR SPEAKER VERIFICATION
IN ROOM REVERBERATION

Sriram Ganapathy1, Jason Pelecanos2 and Mohamed Kamal Omar2

1Dept. of ECE, Johns Hopkins University, USA
2IBM T.J Watson Research Center, USA

ganapathy@jhu.edu, {jwpeleca,mkomar}@us.ibm.com

ABSTRACT

The performance of a typical speaker verification system degrades
significantly in reverberant environments. This degradation is partly
due to the conventional feature extraction/compensation techniques
that use analysis windows which are much shorter than typical room
impulse responses. In this paper, we present a feature extraction
technique which estimates long-term envelopes of speech in nar-
row sub-bands using frequency domain linear prediction (FDLP).
When speech is corrupted by reverberation, the long-term sub-band
envelopes are convolved in time with those of the room impulse re-
sponse function. In a first order approximation, gain normalization
of these envelopes in the FDLP model suppresses the room reverber-
ation artifacts. Experiments are performed on the8 core conditions
of the NIST 2008 speaker recognition evaluation (SRE). In these ex-
periments, the FDLP features provide significant improvements on
the interview microphone conditions (relative improvements of20-
30%) over the corresponding baseline system with MFCC features.

Index Terms— Frequency Domain Linear Prediction (FDLP),
Room Reverberation, Speaker Verification.

1. INTRODUCTION

Most state-of-the-art speaker verification systems perform well in
controlled environments where speech data is collected from reason-
ably clean conditions. However, the performance of these systems
are degraded in the presence of reverberation artifacts. This is pri-
marily due to the temporal smearing of short-term spectra which are
used for conventional features like MFCCs [1].

A number of feature compensation techniques have been pro-
posed in the past for speaker verification systems (for example, fea-
ture warping [2], RASTA processing [3] and cepstral mean subtrac-
tion (CMS) [4]). Although these techniques (which are based on
short-term spectra of speech) provide good improvements for short-
term distortions like telephone channel conditions, they fail to sup-
press the long-term artifacts caused by room reverberation.

In reverberant environments, the speech signal that reaches the
microphone is superimposed with multiple reflected versions of the
original speech signal. These superpositions can be modelled by the
convolution of the room impulse response, that accounts for individ-
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ual reflection delays, with the original speech signal, i.e.,

r(t) = s(t) ∗ h(t), (1)

wheres(t), h(t) andr(t) denote the original speech signal, the room
impulse response and the reverberant speech respectively. The effect
of reverberation on the short-time Fourier transform (STFT) of the
speech signals(t) can be represented as

R(n, ωk) = S(n, ωk)H(n, ωk), (2)

whereS(n, ωk) andR(n, ωk) are the STFTs of the clean speech
signals(t) and reverberant speechr(t) respectively. Here,H(n, ωk)
denotes the STFT of the room impulse responseh(t), n denotes the
frame index andwk denotes thekth frequency bin.

The amount of reverberation in speech is generally character-
ized by reverberation time (T60) (time required for reflections of
a direct sound to decay by 60dB below the level of the direct
sound, typically in the range of200-700ms). The main assump-
tion in conventional short-term channel compensation techniques is
H(n, ωk) = H(ωk)∀n. While this assumption is reasonable for dis-
tortions like linear telephone channel noises, it is not valid for long-
term artifacts like room reverberations. Thus, by using conventional
approaches like CMS (where analysis windows for deriving cepstral
features are much shorter thanT60), the effect of reverberation can-
not be suppressed by a mean subtraction in the cepstral domain.

The use of long-term mean subtraction has been studied in the
past for the suppression of room reverberation [5]. This approachin-
volves the subtraction of a mean estimate of the log spectrum using
a long-term (2s) analysis window, followed by overlap-add resyn-
thesis. The application of gain normalization of1s long sub-band
temporal envelopes has also shown to be useful for speech recogni-
tion in room reverberations [6].

In this paper, we extend the previous approach in [6] for the task
of speaker verification in reverberant environments. The suppression
of the reverberation artifacts is achieved by a gain normalization of
the sub-band temporal envelopes estimated using frequency domain
linear prediction (FDLP). This normalization technique assumes a
constant value for the sub-band temporal envelope of the room im-
pulse response within the analysis window. In our feature extraction,
this assumption is emphasized by analyzing long temporal regions
of the speech signal (10s) in narrow sub-bands (96 bands). Finally,
the normalized sub-band envelopes are integrated to form mel-band
energies and are converted to cepstral features similar to MFCCs.

Experiments are performed on a Gaussian Mixture Model-
Universal Background Model (GMM-UBM) speaker verification
system [10]. The models are evaluated using all of the8 core condi-
tions of the NIST 2008 SRE task. In these experiments, the proposed
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Fig. 2. Block schematic of the proposed feature extraction.
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Fig. 1. Illustration of the all-pole modelling property of FDLP. (a)
a portion of the speech signal, (b) its temporal envelope, and (c) all
pole model obtained using FDLP.

features provide significant improvements on the interview condi-
tions over the baseline system with MFCC features.

The rest of the paper is organized as follows. In Sec. 2, the FDLP
technique for feature extraction is explained. Speaker verification
experiments with the proposed features are reported in Sec. 3 and 4.
In Sec. 5, we conclude with a discussion of the proposed features.

2. FEATURE EXTRACTION

2.1. Deriving sub-band envelopes using FDLP

Conventionally, linear prediction is applied to the speech signal in
the time domain to obtain an autoregressive model of the power spec-
trum of the signal. On the other hand, linear prediction can be ap-
plied to the discrete spectral representations of the signal to provide
autoregressive models of the temporal envelope1 of the signal [7].
This technique is referred to as frequency domain linear prediction
(FDLP).

In our implementation, the discrete cosine transform (DCT) is
applied on long temporal segments (hundreds of ms) and linear pre-
diction is performed on the DCT components to yield a parametric
model of the Hilbert envelope of speech. Fig. 1 shows the AR mod-
elling property of FDLP. It shows (a) a portion of the speech signal,
(b) its temporal envelope and (c) an all pole approximation for the
temporal envelope using FDLP.

1We use the term temporal envelope to denote the Hilbert envelope of the
signal, which is the square magnitude of the analytic signal.

The block schematic for the FDLP feature extraction is shown
in Fig. 2. Long segments of the input speech signal (10s) are trans-
formed using DCT. A set of rectangular overlapping windows are
applied on the DCT components to yield96 sub-band DCT compo-
nents. In each sub-band, FDLP is performed by applying linear pre-
diction on the DCT components. FDLP provides a parametric model
for the sub-band envelope in the form of an all-pole polynomial (de-
scribed by{a0, a1..., ap }), wherep is the FDLP model order with
a0 = 1 for predicting the current sample. In our experiments, we
use a model order of30 poles per sub-band for1s of speech. The
resulting sub-band envelope can be written as,

E(t) =
G

|
Pk=p

k=0
ake−i2πkt|2

(3)

whereE(t) denotes the FDLP envelope as a function of time,t,
(which approximates the sub-band temporal envelope) andG de-
notes the gain of the all-pole model.

2.2. Gain normalization

When a speech signal is corrupted by room reverberation, the sub-
band temporal envelope of the reverberant speech (in narrow sub-
bands of long analysis windows) is a convolution of the temporal
envelope of clean speech with that of the room impulse response
function [8]. For a first-order approximation, the temporal envelope
of room impulse response function in narrow sub-bands is assumed
to be a constant [6]. Thus, gain normalization of the sub-band en-
velopes (settingG = 1) provides reasonable suppression of the re-
verberant artifacts in speech.

2.3. Cepstral features

The gain normalized sub-band envelopes are integrated into short-
time frames (32ms with a shift of10ms) using a Hamming window.
The frequency axis of the96 linear sub-bands is warped accord-
ing to the mel-scale. We use37 Mel bands in the frequency range
of 125-3800 Hz. The output of the integration process provides a
gain normalized mel-scale energy representation of speech similar
to the mel-spectrogram obtained in conventional MFCC feature ex-
traction [1]. These mel-band energies are converted to cepstral coef-
ficients by using a log operation followed by a DCT (with the matlab
package in [9]). We use13 cepstral coefficients along with derivative
and acceleration components yielding39 dimensional features.

2.4. CMS versus Gain normalization

Cepstral mean subtraction (CMS) tries to suppress the effect of
short-term convolutions in speech (like telephone channel distor-
tions) by subtracting the mean of the cepstral features. Generally, the
mean is computed over a sliding window (of more than1s) or over
the entire recording. However, if the convolutive effect is spread over
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Fig. 3. Comparison of CMS for MFCC and gain normalization for FDLP.

long regions of the speech signal (more than frame duration) such as
with room reverberation, CMS is unable to suppress the artifacts. For
these distortions, the gain normalization technique used for FDLP
features is more effective as the normalization is performed over long
segments (10s). Furthermore, the gain normalization technique does
not involve a mean computation or a rolling window operation.

The effectiveness of the proposed approach is illustrated in
Fig. 3, where we plotC0 for MFCC features and FDLP features. In
these plots, MFCC features are processed with CMS and the FDLP
features are derived from gain normalized sub-band envelopes. The
FDLP features provide better invariance to telephone distortions as
well as reverberant artifacts compared to MFCC features.

3. SPEAKER VERIFICATION SYSTEM

3.1. Baseline features

The baseline features consist of39 dimensional MFCC features [1]
containing13 cepstral coefficients, their delta and acceleration com-
ponents. These features are computed on32ms frames of speech
signal with a shift of10ms. As with the case of FDLP features, we
use37 Mel-filters in the frequency range of125-3800 Hz for the
baseline features.

3.2. Experimental set-up

The proposed features as well as the baseline features are used in
a GMM-UBM based speaker verification system [10]. The input
speech features are feature warped [2] and a512 component GMM is
trained on the development data. Once the UBM is trained, the mix-
ture component means are MAP adapted and concatenated to form
supervectors [11]. Nuisance attribute projection (NAP) is applied on
the supervectors to remove directions which correspond to large in-
tra speaker variability (like session variability). In our system, we

remove64 nuisance directions based on the principal components
extracted from the within-class covariance matrix [12].

For the task of verification, scores are computed as

s = ΦT
e KΦv (4)

whereΦe, Φv are the supervectors corresponding to enrollment and
verification recordings respectively,K is the NAP projection matrix
ands is the score for this pair of conversation sides. These scores are
further normalized using the ZT score normalization procedure [13].

The proposed features are evaluated on the core conditions of
the NIST 2008 speaker recognition evaluation (SRE) [14]. The de-
scription of the8 core evaluation conditions is given in Table. 1. The
development data set consists of a combination of audio from the
NIST 2004 speaker recognition database, the Switchboard II Phase
III corpora, the NIST 2006 speaker recognition database, and the
NIST08 interview development set. The collection contains 13770
recordings. There are 1769 speakers in the development data: 988
female speakers and 781 male speakers. The development set was
used to estimate the UBM parameters, the expected within-class co-
variance matrix over all speakers for NAP compensation, as well as
for gender-dependent ZT score normalization.

4. RESULTS

The baseline features are39 dimensional MFCC features as de-
scribed in Sec. 3.1. The FDLP features are used in3 configura-
tions. All configurations use the gain normalization technique on
the FDLP envelopes. FDLP-MEL-1s corresponds to features de-
rived from temporal envelopes directly on the mel-bands (37 bands
instead of96 bands). These features use a temporal analysis win-
dow of 1s on the input speech similar to [6] (and hence, a1s win-
dow for the gain normalization as well). FDLP-MEL-10s also uses
mel-band temporal envelopes obtained from an input analysis win-
dow of10s. FDLP-96bands-10s features use a10s analysis window



Table 1. Core evaluation conditions for the NIST 2008 SRE task.
Cond. Task

1. Interview speech in training and test.
2. Interview speech from the same microphone type in training and test.
3. Interview speech from different microphones types in training and test.
4. Interview training speech and telephone test speech.
5. Telephone training speech and non-interview microphone test speech.
6. Telephone speech in training and test from multiple languages.
7. English language telephone speech in training and test.
8. English language telephone speech spoken by a native U.S. English speaker in training and test.

Table 2. Performance of various features in terms of min DCF (×103) and EER (%) in parentheses.

Feature. Cond. 1 Cond. 2 Cond. 3 Cond. 4 Cond. 5 Cond. 6 Cond. 7 Cond. 8
MFCC (Baseline) 28.8 (5.3) 3.2 (0.8) 29.7 (5.4) 35.5 (7.8) 32.1 (7.9) 41.1 (7.6) 15.5 (3.3) 15.0 (3.5)
FDLP-MEL (1s) 28.4 (5.2) 3.1 (0.7) 29.2 (5.3) 36.1 (8.8) 29.1 (7.6) 44.2 (8.1) 14.0 (3.1) 15.1 (3.4)
FDLP-MEL (10s) 24.4 (4.8) 2.2 (0.8) 24.9 (4.9) 32.8 (7.5) 26.0 (6.2) 42.2 (7.7) 12.9 (3.0) 13.4 (3.5)

FDLP-96 bands (10s) 19.7 (3.6) 1.5 (0.3) 20.5 (3.7) 27.1 (6.4) 24.3 (6.8) 45.8 (8.2) 14.6 (3.4) 13.5 (3.2)

and derive temporal envelopes in96 sub-bands. Gain normalization
is applied and the sub-band envelopes are warped back to mel-scale
as described in Sec. 2.

The speaker verification results for the various feature extraction
techniques are reported in Table 2. FDLP-MEL-1s features provide
performances similar to the baseline MFCC features. When the anal-
ysis window is increased to10s, there is a relative performance im-
provement of about15% on almost all the conditions. Furthermore,
applying an initial sub-band analysis of96 bands provides signifi-
cant improvements for the interview mic conditions (relatively about
20-30% over the baseline system). This is due to the application of
gain normalization on longer analysis windows in narrow sub-bands
which validates the first order approximation made in the technique.
A drop in performance is observed for Cond.6 which may be at-
tributed to the use of different languages in training and test condi-
tions (where the use of longer context degrades the performance).

5. SUMMARY

In this paper, we have proposed a feature normalization technique
for speaker verification in reverberant conditions. The normaliza-
tion procedure is applied on FDLP features derived from long tem-
poral segments of speech in narrow sub-bands. The application of
the gain normalization is followed by the integration of the sub-
band envelopes to provide short-term mel-band energies similar to
the mel-spectrogram in MFCC feature extraction. In this way, the
proposed technique can be viewed as a pre-processing mechanism
for the MFCC features to improve robustness in reverberant envi-
ronments.
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