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Abstract

We present a feature extraction technique for automatic speech
recognition that uses Tandem representation of short-term spec-
tral envelope and modulation frequency features. These fea-
tures, derived from sub-band temporal envelopes of speech es-
timated using frequency domain linear prediction, are combined
at the phoneme posterior level. Tandem representations derived
from these phoneme posteriors are used along with HMM based
ASR systems for both small and large vocabulary continuous
speech recognition (LVCSR) tasks. For a small vocabulary con-
tinuous digit task on the OGI Digits database, the proposed fea-
tures reduce the word error rate (WER) by 13 % relative to other
feature extraction techniques. We obtain a relative reduction of
about 14 % in WER for an LVCSR task using the NIST RT05
evaluation data. For phoneme recognition tasks on the TIMIT
database these features provide a relative improvement of 13%
compared to other techniques.
Index Terms: Frequency Domain Linear Prediction (FDLP),
Spectral Envelope Features, Modulation Frequency Features,
Tandem based ASR systems.

1. Introduction
Feature extraction techniques for automatic speech recognition
(ASR) are designed to suppress irrelevant redundancies con-
tained in the speech signal while preserving relevant informa-
tion about sound classes. These features should also be invari-
ant across speakers, additive noise and channel distortions. In
conventional feature extraction techniques like Mel Frequency
Cepstral Coefficients (MFCC) [1] and Perceptual Linear Pre-
diction (PLP) [2], acoustic features are derived by analyzing
the spectrum of speech in short analysis windows (10-30 ms).
Information about the dynamics of the underlying speech signal
is added to these features by augmenting them with derivatives
of the spectral trajectory at each instant. In more recent ap-
proaches for feature extraction [3, 4], long analysis windows
(several hundred milliseconds) have been used to capture im-
portant acoustic information in the1-16 Hz modulation fre-
quency range [5].

Although these acoustic features represent the dynamics of
the speech signal, further improvements can be achieved by re-
ducing their dimensionality and enhancing their ability to dis-
criminate between various sound classes [6]. For these features

This work was partially supported by grants from European IST
Programme DIRAC Project FP6-0027787; the Swiss National Center
of Competence in Research (NCCR) on “Interactive Multi-modalIn-
formation Management (IM)2”

0 100 200 300 400 500 600 700 800 900 1000

−5000

0

5000

0 100 200 300 400 500 600 700 800 900 1000

2.5

5

x 10
7

0 100 200 300 400 500 600 700 800 900 1000

2.5

5

x 10
7

Time (ms)

Figure 1: Illustration of the all-pole modeling property of FDLP.
(a) a portion of the sub-band speech signal, (b) its Hilbert enve-
lope (c) all pole model obtained using FDLP

to be useful with statistical models like Hidden Markov Mod-
els (HMMs), they need to be transformed such that their distri-
butions can be effectively modeled using a mixtures of Gaus-
sians. Using the Tandem technique proposed in [7], acoustic
features are trained discriminatively with a multi-layer percep-
tron (MLP) and transformed into features that are modeled by
HMMs. It is observed that these features have less speaker vari-
ability and perform better than the conventional features for var-
ious ASR tasks [6, 8].

In this paper, we extend our feature extraction technique [9]
for Tandem processing in ASR. These features combine short-
term spectral information along with long-term amplitude mod-
ulations. Unlike conventional feature extraction techniques, we
analyze speech signals in frequency sub-bands over long tem-
poral segments (several hundred milliseconds). We estimate
temporal envelopes in frequency sub-bands using the dual of
the conventional time domain linear prediction (TDLP). This is
done by applying linear prediction on the cosine transform of
sub-band signals [10]. In the same way as the TDLP fits an
all pole model to the power spectrum of the signal, frequency
domain linear prediction (FDLP) fits an all pole model to the
Hilbert envelope which represents the instantaneous energy of
the time domain signal [11]. Fig. 1 illustrates the AR modeling
of FDLP. It shows (a) a portion of the sub-band speech signal,
(b) its Hilbert envelope computed using the Fourier transform
technique [12] and (c) an all pole approximation to the Hilbert
Envelope using FDLP. These representations of the speech sig-
nal are able to capture fine temporal events associated with tran-
sient events like stop bursts while at the same time summarize
the temporal evolution of the signal energy [10].
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Figure 2: Deriving sub-band temporal envelopes from speech
signal using FDLP

As described in [9], short-term spectral envelopes are de-
rived from sub-band envelopes by integrating the sub-band en-
velopes in short analysis windows. Modulation frequency fea-
tures are derived by compressing these envelopes using static
and adaptive compression techniques. We apply the cosine
transform in long analysis windows (200 ms) to yield modu-
lation frequency components of speech. The spectral envelope
and modulation frequency features are used to train MLPs and
are combined at the phoneme posterior level. These phoneme
posterior probabilities are used as input features for Tandem
based ASR systems.

The rest of the paper is organized as follows. In Sec. 2, the
FDLP technique for deriving sub-band envelopes is discussed.
We describe the conversion of these sub-band envelopes into
Tandem representations in Sec. 3. Experiments performed with
the proposed features for a variety of ASR tasks are reported in
Sec. 4. In Sec. 5, we conclude with a discussion of the proposed
features.

2. Frequency Domain Linear Prediction
FDLP is an efficient technique for auto regressive (AR) mod-
eling of temporal envelopes of a signal [10]. In this technique,
we first apply the discrete cosine transform (DCT) on long seg-
ments of speech to obtain a real valued spectral representation
of the signal. The DCT transform of the signal is decomposed
using critical-band-sized windows. Linear prediction is per-
formed on each sub-band DCT signal to obtain a parametric
model of the its temporal envelope. The block schematic for
extraction of sub-band temporal envelopes from speech signal
is shown in Fig. 2.

3. Tandem Representations of Features
from Sub-band Temporal Envelopes

We use the sub-band temporal envelopes estimated using FDLP
to derive spectral envelope and modulation frequency features.
Tandem representations of these features are used for ASR ex-
periments. Fig. 3 shows the schematic of the proposed feature
extraction technique.

3.1. Spectral envelope features

In conventional feature extraction techniques like PLP, short-
term features are extracted by integrating the power spectral
estimates on Mel or Bark scale [1, 2]. Since integration of
signal energy is identical in time and frequency domain, sub-
band Hilbert envelopes can equivalently be used for obtaining
the short-term energy estimates in the time domain. In our tech-
nique, we derive short-term features from sub-band temporal
envelopes, which are modelled using FDLP. This is done by in-
tegrating the envelopes in short term frames (of the order of 25
ms with a shift of 10 ms). These short term sub-band energies
are converted into 13 cepstral features along with their first and
second derivatives [9], similar to the PLP features [2]. Each
frame of these spectral envelope features is used with a context
of 9 frames for training an MLP network.

3.2. Modulation frequency features

In techniques like TRAPS [3] and MRASTA [4], modulation
frequency features are derived by analyzing temporal trajecto-
ries of spectral energy estimates in individual sub-bands using
long analysis windows. As described earlier, since FDLP esti-
mates the temporal envelope in sub-bands, modulation features
can be derived from these envelopes as well. We compress the
sub-band temporal envelopes statically and dynamically. The
envelopes are compressed statically using the logarithmic func-
tion. Dynamic compression of the envelopes is achieved using
an adaptation circuit which consists of five consecutive non-
linear adaptation loops proposed in [18]. These loops are de-
signed so that sudden transitions in the sub-band envelope that
are fast compared to the time constants of the adaptation loops
are amplified linearly at the output, while the steady state re-
gions of the input signal are compressed logarithmically. The
compressed temporal envelopes are then transformed using the
Discrete Cosine Transform (DCT) in long term windows (200
ms long, with a shift of 10 ms) We use 14 modulation frequency
components from each cosine transform, yielding modulation
spectrum in the0 − 35 Hz range with a resolution of2.5 Hz
[9]. The static and dynamic modulation frequency features of
each critical band are stacked together and used to train an MLP
network.

3.3. Tandem representations of features

We combine the spectral envelope and modulation frequency
features at the phoneme posterior level using the Dempster
Shafer (DS) theory of evidence [19]. These phoneme posteriors
are first gaussianized by using the log function and then decor-
related using the Karhunen-Loeve Transform (KLT) [7]. This
reduces the dimensionality of the feature vectors by retaining
only the feature components which contribute most to the vari-
ance of the data. We use25 dimensional features in our Tandem
representations similar to [6].

4. Experiments
We perform a set of experiments using Tandem representa-
tions of the proposed spectral envelope and modulation fre-
quency features along with other state-of-the-art features for
ASR. These include a phoneme recognition task, a small vo-
cabulary continuous digit recognition task and a large vocab-
ulary continuous speech recognition (LVCSR) task. For each
of these experiments, we train three layered MLPs to estimate
phoneme posterior probabilities using these features. The pro-
posed features are compared with three other feature extraction
techniques - PLP features with a 9 frame context [14] which
are similar to spectral envelope features derived using FDLP
(FDLP-S), M-RASTA features [4] and Modulation Spectro-
Gram (MSG) features [13] with a 9 frame context, which are
both similar to modulation frequency features (FDLP-M).

We combine FDLP-S features with FDLP-M features us-
ing the DS theory of evidence to obtain a joint spectro-temporal
feature set (FDLP-S+FDLP-M). Similarly, we derive two more
feature sets by combining PLP features with M-RASTA fea-
tures (PLP+M-RASTA) and MSG features (PLP+MSG). 25 di-
mensional Tandem representations of these features are used for
our experiments. We also experiment with 39 dimensional PLP
features without any Tandem processing (PLP-D).

Our first experiment is to validate the usefulness of Tandem
representation of our features for a phoneme recognition task
using HMMs. We perform experiments on the TIMIT database,
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Figure 3: Schematic of the joint spectral envelope-modulation features for posterior based ASR

Table 1: Phoneme Error Rates (%) for different feature extrac-
tion techniques on the TIMIT database

Features PER (%)
PLP-D 31.7
PLP 29.9

FDLP-S 29.9
M-RASTA 33.2

MSG 34.9
FDLP-M 29.4

PLP+M-RASTA 28.8
PLP+MSG 28.6

FDLP-S+FDLP-M 27.5

excluding ‘sa’ dialect sentences. All speech files are sampled
at 16 kHz. The training data consists of3000 utterances from
375 speakers, cross validation data set consists of696 utter-
ances from87 speakers and the test data set consists of1344

utterances from168 speakers. The TIMIT database, which is
hand-labeled using61 labels is mapped to the standard set of
39 phonemes [14]. A three layered MLP is used to estimate
the phoneme posterior probabilities. The network consisting of
1000 hidden neurons, and39 output neurons (with soft max
nonlinearity) representing the phoneme classes is trained using
the standard back propagation algorithm with cross entropy er-
ror criteria. The learning rate and stopping criterion are con-
trolled by the error in the frame-based phoneme classification
on the cross validation data.

The Tandem representation of each feature set is used along
with a decision tree clustered triphone HMM with3 states
per triphone, trained using standard HTK maximum likelihood
training procedures. The emission probability density in each
HMM state is modeled with11 diagonal covariance Gaus-
sians. We use a simple word-loop grammar model using the
same standard set of39 phonemes. Table 1 shows the results
for phoneme error rates (PER) across all individual phoneme
classes for these techniques. The proposed features (FDLP-

Table 2: Word Error Rates (%) on the OGI Digits database for
different feature extraction techniques

Features WER (%)
PLP-D 4.1
PLP 3.8

FDLP-S 3.4
M-RASTA 3.7

MSG 4.0
FDLP-M 3.2

PLP+M-RASTA 2.9
PLP+MSG 3.0

FDLP-S+FDLP-M 2.9

S+FDLP-M) reduced the PER by 13% compared to PLP-D
baseline feature set.

In our second experiment, we use these features on a small-
vocabulary continuous digit recognition (OGI Digits database)
to recognize eleven (0-9 and ”zero”) digits with 28 pronunci-
ation variants [4]. MLPs are trained using these features to
estimate posterior probabilities of 29 English phonemes us-
ing the whole Stories database plus the training part of Num-
bers95 database with approximately 10% of data for cross-
validation. Tandem representation of the features are used
along with a phoneme-based HMM system with 22 context-
independent three-state phoneme HMMs, each model distribu-
tion represented by 32 Gaussian mixture components [4]. Ta-
ble 2 shows the results for word recognition accuracies. For
this task, the proposed spectral envelope features (FDLP-S) and
modulation frequency features (FDLP-M) reduce the WER by
10% and 13 % compared to PLP and MRASTA features respec-
tively.

In our third experiment, we use these features on an LVCSR
task using the AMI LVCSR system for meeting transcription
[15]. The training data for this system uses individual headset
microphone (IHM) data from four meeting corpora; NIST (13
hours), ISL (10 hours), ICSI (73 hours) and a preliminary part



Table 3: Word Error Rates (%) on RT05 Meeting data, for different feature extraction techniques. TOT - total WER(%) for all test sets,
AMI, CMU, ICSI, NIST, VT - WER (%) on individual test sets [15]

Features TOT AMI CMU ICSI NIST VT
PLP-D 41.9 42.4 39.4 31.3 50.9 46.4
PLP 46.4 40.9 43.7 30.0 54.7 65.1

FDLP-S 42.5 41.6 41.5 33.1 51.6 45.5
M-RASTA 45.4 46.7 41.6 36.8 53.4 49.0

MSG 44.4 43.9 40.7 34.5 52.1 52.3
FDLP-M 39.5 37.7 33.7 39.4 45.4 41.7

PLP+M-RASTA 40.5 40.5 37.8 28.5 48.9 47.9
PLP+MSG 39.6 38.8 39.3 27.3 46.6 47.6

FDLP-S+FDLP-M 35.9 36.2 34.2 27.8 42.9 39.0

of the AMI corpus (16 hours). MLPs are trained on the whole
training set in order to obtain estimates of phoneme posteriors
for each of the feature sets. Acoustic models are phonetically
state tied triphone models trained using standard HTK maxi-
mum likelihood training procedures. The recognition experi-
ments are conducted on the NIST RT05 [16] evaluation data.
Juicer large vocabulary decoder is used for recognition with a
pruned trigram language model [17]. This is used along with
reference speech segments provided by NIST for decoding and
the pronunciation dictionary used in AMI NIST RT05s system
[15]. Table 3 shows the results for word recognition accuracies
for these techniques on the RT05 meeting corpus. The proposed
features (FDLP-S+FDLP-M) obtain a significant relative reduc-
tion of about 14 % in WER for the LCVSR task (compared to
a relative reduction of 5% for PLP+M-RASTA and PLP+MSG
features).

In all our experiments, Tandem representations of the
proposed features improve ASR accuracies over other fea-
tures. FDLP-S features provide similar results as PLP fea-
tures. Similarly, the modulation frequency features (FDLP-M)
improve ASR performances over other techniques that derive
features from the modulation spectrum. Combining these fea-
ture streams results in significant improvements for all the three
tasks.

5. Conclusions
Acoustic features derived from sub-band trajectories of speech
estimated using FDLP provide good representations of the
speech signal. Tandem processing of these features further re-
duces their irrelevant variabilities while increasing the discrim-
inability between speech classes. Combining the spectral en-
velope and modulation features provides significant improve-
ments over the base-line systems for ASR tasks.
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