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Abstract

Conventional speech analysis techniques are based on estimating the spectral

content of relatively short (about 10-20 ms) segments of the signal. However, an

alternate way to describe a speech signal is a summation of amplitude modulated

frequency bands, where each frequency band consists of a smooth envelope (gross

structure) modulating a carrier signal (fine structure). The analytic signal (AS) forms

a suitable candidate for such an envelope-carrier decomposition with the squared

magnitude of the AS, called the Hilbert envelope, representing the smooth structure

and the phase component of the AS representing the fine structure. However, the

computation of analytic signal is cumbersome and theoretically requires the use of a

filter with infinite impulse response.

In this thesis, we adopt an auto-regressive (AR) modeling approach for esti-

mating the Hilbert envelope of the signal. The Hilbert envelope represents the evo-

lution of signal energy in time domain. This model, referred to as frequency domain

linear prediction (FDLP), is based on the application of linear prediction on discrete

cosine transform of the signal. Thus, FDLP is dual process to the conventional time
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domain linear prediction (TDLP).

Just like conventional AR models, the FDLP model describes the perceptu-

ally dominant peaks and removes the finer-scale detail. This suppression of detail is

particularly useful for parametric representation of speech/audio signals, where the

goal is to summarize the general form of the signal. We show several applications

of the FDLP model for speech and audio processing systems. As a unified model

of speech and audio signals, we apply the FDLP technique for wide-band high fi-

delity audio coding. In subjective evaluations, the FDLP codec compares well with

state-of-art speech/audio codecs.

In order to derive robust representation in the presence of reverberation and

channel distortions, we propose a gain normalization procedure for FDLP envelopes.

The gain normalization suppresses the effect of long-term convolutive distortions in

sub-bands of speech. We apply the gain-normalized FDLP envelopes for feature

extraction in speaker, speech and phoneme recognition experiments. In these exper-

iments, the FDLP features provide significant improvements over the conventional

techniques in noisy and reverberant environments.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Conventional Signal Analysis

Typically, a speech/audio processing system has a front-end signal analysis stage which

receives its input as a sequence of signal samples and converts it into a representation

which is suitable for further processing. The main function of this analysis block is to

preserve necessary signal information in a compact manner while suppressing irrelevant

redundancies.

Conventionally, signal analysis for speech/audio signals is done by windowing the

signal into short-term frames (typically of the order of 20-30ms) followed by an estimation

of spectrum within each frame. A sequence of these short-term frames contain the signal

information which are processed by subsequent stages. For speech signals, most of the

information captured by such an analysis relates to formant structure of speech. These

1
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Figure 1.1: Overview of time-frequency energy representation for (a) conventional analysis
and (b) proposed analysis.

approaches have been popular for at least three decades now. Typical examples for such

applications in speech recognition are the mel-frequency cepstral coefficients (MFCC) [1],

perceptual linear prediction (PLP) [2], and for audio coding are advanced audio coding

(AAC) [3], adaptive multi-rate coding (AMR) [4].

1.1.2 Conventional Analysis Versus Proposed Approach

However, speech/audio signals have information spread across longer temporal context of

the order of 200ms or more. For example, even a basic speech unit like a phoneme lasts for

70-80ms. The choice of 20-30ms in a short-term spectrum approach may be ad-hoc as it

does not address the time-frequency compromise inherent in any signal analysis. Specifically,

conventional approaches sample the spectrum at a preset rate before the application of any

further processing.

In this thesis, we propose a dual representation for speech and audio analysis. An

outline of the approach used in conventional processing and the proposed approach is shown

2
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in Fig. 1.1. In the conventional approach, an individual processing frame is a short-term

spectrum estimated on the signal. This is shown in Fig. 1.1(a). The individual spectral

frames are stacked in a column-wise manner to obtain a two-dimensional (2-D) representa-

tion of the speech signal. An alternate way to construct the same 2-D representation is to

process a single frequency band over a long duration and stack these bands in a row-wise

manner. This is shown in Fig. 1.1(b). This processing technique is dual to conventional

methods and therefore opens a variety of applications. From a historical perspective, the

proposed method of signal analysis comes from the underlying principle of sound spectro-

graph which was widely used for speech and audio analysis in 1950s [5]. In operation, the

sound is stored in magnetic/metal disk and it is played many times. In each repetition,

the signal is passed is through a band-pass filter whose frequency range is varied in each

repetition. The output of the filter is recorded in a paper placed on a rotating drum. The

amplitude fluctuations are recorded as intensity variations on the paper - darker regions

corresponding to higher energy levels. After each repetition the stylus is shifted so at to

represent the next frequency range. By this process, a 2-D representation of the sound is

produced. This method is fundamentally similar to the proposed scheme in Fig. 1.1(b).

The modulation spectrum is defined as the spectral transform of the amplitude

modulation of the speech signal in sub-bands. In Sec. 1.2.1, we describe various ways of

estimating the amplitude modulation. The modulation spectrum for speech signal has a

typical shape with a peak activity around 4 Hz for speech signals.

There has been various studies in the past two decades providing physiological

and psycho-physical evidences for existence of a modulation representation in the human

3
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auditory system. Although a number of examples can be cited in this regard, we limit the

discussion to a few important cases.

Physiological Evidence

Spectro-Temporal Receptive Field (STRF) - Various studies have been done on

analyzing the front-end cochlear processing in the human auditory system. These

studies have also made significant influence in automatic speech recognition and coding

(for example, the use of critical bandwidth in perceptual linear prediction (PLP)

processing [2]). Recently, several studies have also tried to unravel the signal analysis

involved in higher levels of auditory processing like the primary auditory cortex [6].

Specifically, much insight about the physiological functions can be gained by the

measuring the spectro-temporal receptive fields (STRFs) of the auditory neurons in

the cortex of animals and humans. The STRF denotes a two dimensional time-

frequency impulse response of a neuron assuming a linear model for the neuron and

determines the modulation selectivity of the neuron. In the scope of this thesis, the

most relevant aspect of STRFs is the temporal span of these measured responses.

Typically, some of these STRFs extend for about 250 ms or more [6] which is about a

syllable length in speech signals. If we desire to have a signal analysis scheme which

is consistent with these physiological studies, there is a need to process longer context

of speech/audio signals than the conventional 25ms.

Psychophysical Evidence
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Importance of modulation frequency selectivity - The importance of various mod-

ulation frequencies in speech has been analyzed using a set of psychophysical exper-

iments [7, 8]. In the first set of experiments, speech envelope in sub-bands (octave

bands) is downsampled and filtered using a low-pass filter with a variable cut-off

frequency [7]. The ratio of filtered envelope to the original envelope is used as a

modulation function on the original sub-band signal. Finally, a sub-band re-synthesis

is done to obtain a full-band speech signal. The modified speech signal is used for

listening experiments on a sentence recognition as well as a phoneme recognition task.

By varying the cut-off frequency of the filter, the effect of removing the lower and

higher modulations is analyzed. The results from these two experiments indicate that

most of the speech intelligibly is contained in 1 − 16 Hz of modulations with a peak

sensitivity at 4 Hz. In order to extract relevant modulation information from a speech

signal, the analysis window must be long enough (for example, a window length of

250 ms is needed for representing a 4 Hz modulation component).

Filtering of cepstral coefficients - Since cepstral coefficients are widely used in speech

recognition applications, the effect of band-pass filtering of cepstral coefficients for

speech intelligibility was studied in [9]. In these studies, LP parameters are estimated

in short-term frames and are converted to cepstral coefficients. The sequence of cep-

stral coefficients are then filtered using a low-pass, high-pass and band-pass filter.

The filtered cepstral coefficients are converted back to the LP parameters which are

used to filter the original LP residual. The results of these experiments suggest that

speech intelligibility is not degraded when the cut-off frequency for the low-pass filter
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is above 24 Hz, Similarly, intelligibility is also preserved when the cut-off frequency

for the high-pass filter is below 1 Hz [9]. These results are similar to experiments done

in [7].

Spectral versus temporal modulation - An investigation on the relative importance

of the spectral versus temporal modulation was done with human speech recogni-

tion experiments in [10]. Specifically, the experiment was designed to determine the

lower limit on the number of spectral bands required for nearly perfect human speech

recognition. Speech signal was analyzed in a set of broad frequency bands and the en-

velope information was extracted using a half-wave rectifier and low-pass filter. This

envelope was used to modulate white noise with the same band-width as the original

speech sub-band. These sub-bands were re-synthesized to form a full-band signal and

listening experiments were conducted using these signals for sentence and phoneme

recognition. The variable parameter is the number of broad sub-bands used to derive

the envelope information. The result of these experiments [10] suggest that good hu-

man speech recognition performance can be obtained with only 3-4 sub-bands as long

as the temporal modulation cues are well preserved.

1.2 Past Modulation Approaches

Modulation analysis of speech/audio signal refers to the method of decomposing sub-band

speech signal as a multiplication of a slowly varying envelope signal with a fine carrier signal.

The smooth modulating signal, referred to as the amplitude modulation (AM) component,

summarizes the energy variation as a function of time for the particular sub-band. The
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carrier signal, referred to as the frequency modulation (FM) component tries to capture the

fine frequency variations around the center frequency of the sub-band. The carrier signal

does not contain significant energy variations as these are captured by the AM component.

Such an AM-FM decomposition performed over all sub-bands constitutes a signal analysis

technique for speech/audio signals.

In the past, several techniques have been proposed for deriving sub-band modu-

lations in speech/audio processing systems. In this section, we review some of the popular

techniques and their applications.

1.2.1 Demodulation Methodologies

Half-wave Rectification

One of the earliest methods of deriving the envelope from an amplitude modulated signal

is that of half-wave rectification with a low-pass filter [11]. In an analog circuitry, this can

be implemented using a diode and an integrator. Moreover, there is physiological evidence

for the half-wave rectification in the inner hair cells of cochlea. The design of the cut-off

frequency1 for the low-pass filter is critical for this method of AM detection. A lower value

for the cut-off frequency will result in loss of important signal information where as a higher

cut-off frequency will result in additional noise in the signal.

Hilbert Envelope

The analytic signal representation of a real-valued signal is the sum of the signal and its

quadrature component [12]. Let x(t) denote a time domain signal. Its analytic signal, as

1The cut-off frequency is typically chosen based on prior information about the modulation extent
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defined by Gabor [12], can be written as,

xa(t) = x(t) + jH
[

x(t)
]

, (1.1)

where H denotes Hilbert transform operator which is a convolution of the signal2 with

1
πt

[13]. The Hilbert envelope is defined as the squared magnitude of the analytic signal.

Ex(t) = |xa(t)|2, (1.2)

The analytic signal has one-sided spectrum (non-zero only for positive frequencies). The

Hilbert envelope can be shown to be the squared AM envelope for band-limited modulated

signals [14, 15]. Thus, extraction of the Hilbert envelope results in the AM detection.

Short-term Spectral Energy

The evolution of the short-term spectral energy in individual sub-bands can be used as

representation of the modulations in individual sub-bands [16]. The signal is framed using

short-term (20 − 30ms) windows and the magnitude of the Fourier transform is computed

in each frame (short-term Fourier transform (STFT)). Specifically, let

S(ω, t) = F
[

x(τ)w(τ − t)
]

(1.3)

denote the STFT. For a particular frequency ωk, |S(ωk, t)|2 represents a time domain func-

tion of the evolution of spectral energy. A Fourier transform of this function can yield the

modulation spectrum of speech [16].

2This is shown in Appendix A.1
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Teager Energy Operator

The Teager energy operator is defined as [17]

ψ
[

x(t)
]

=
∂x(t)

∂t
− x(t)

∂2x(t)

∂t2
(1.4)

For an AM-FM signal,

x(t) = a(t)cos[φ(t)], (1.5)

it can be shown that the AM signal magnitude can be obtained as [18]

|a(t)| = ψ
[

x(t)
]

√

ψ
[∂x(t)

∂t

]

(1.6)

This method is referred to as the energy separation algorithm (ESA) and can be applied

for AM-FM decomposition of speech and audio signals.

Coherent Demodulation

In each sub-band, the AM-FM model is assumed on the analytic signal,

x(t) = m(t) c(t) (1.7)

where the carrier signal c(t) is unimodular (meaning |c(t)| = 1, c(t) = ejφ(t). The coherent

carrier signal is defined using the spectral center of gravity of the power spectral density

(PSD) [19], Px(ω, t) = |S(ω, t)|2,

µ(t) =

∫∞
−∞ ωP (ω, t)∂ω
∫∞
−∞ P (ω, t)∂ω

(1.8)

φ(t) =

∫ t

−∞
µ(τ)∂τ (1.9)

m(t) = x(t)e−jφ(t) (1.10)

9
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In this case, the modulating signal is complex unlike the previous methods. In [19], the

authors argue that the choice of complex modulating signal and carrier ensures that for a

bandlimited signal, the envelope and the carrier are also bandlimited.

1.2.2 Applications of Past Approaches

Speech Transmission Index (STI)

One of the earliest applications of the modulation spectrum is the concept of speech trans-

mission index (STI) [20]. STI is used to predict the intelligibility of reverberated signal

in room acoustics. For this purpose, input speech signal x(t) is recorded using a far-field

microphone y(t) and an objective score is derived using the modulation transfer function

(MTF). MTF is defined as the ratio of the magnitude modulation spectrum of output to

that of the input. Let Ex(t), Ey(t) be temporal envelope of input and the output and Ex(f),

Ey(f) denote the corresponding modulation spectra. MTF is defined as,

MTF = α
|Ey(f)|
|Ex(f)|

(1.11)

where α is a normalization constant based on the mean value of Ex(t) and Ey(t). In each

sub-band, the MTF is computed on 14 modulation frequencies from 0.63 Hz to 12.5 Hz

with one-third octave frequency spacing for each of the 7 audio frequency sub-bands which

are octave spaced [20]. The MTF is converted to a signal-to-noise ratio using,

S/N = 10 log10

[

MTF

(1−MTF )

]

(1.12)

The average S/N computed over the matrix of 14 × 7 MTF values is used as the speech

intelligibility measure. This measure is also shown to have good correlation with subjective
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tests performed using reverberated data [20].

Enhanced Spectral Dynamics

The first application of modulation filtering for feature extraction of speech recognition is

the use of derivative features [21]. Cepstral coefficients from short-term frames are extracted

and a context of 7 frames is used for a cepstral filtering process with pre-defined polynomial

coefficients. This filtering yield first and second derivatives of cepstral coefficients. These

are linearly related to the derivative and double derivatives of the log-spectrum of the speech

signal [21]. The derivative features are the output of a band-pass modulation filtering where

the 0 Hz component is removed. These delta cepstral coefficients are linearly combined with

the direct cepstral coefficients and are used for speech recognition. In these experiments,

the derivative features reduce the error rate by half [21].

RASTA and M-RASTA Processing

Relative spectra (RASTA) [16] is method of feature extraction for speech recognition which

tries to achieve robustness to channel distortions using principles of modulation spectra.

As discussed in Sec. 1.1.2, the important speech information for human perceptual system

lies in 1 − 16 Hz of modulations. Some of the temporal effects introduced by the channel

artifacts lie outside this region of the modulation spectrum. By means of band-pass filtering,

the modulations relevant to the speech signal can alone be preserved and those pertaining

to the channel artifacts can be removed. This is particularly useful in automatic speech

recognition (ASR) in mis-matched channel conditions [16], where the channel effects are

convolutive in the signal domain and appear as additive component in the log-spectral
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domain. Modulation processing for RASTA is done using the short-term critical band

energy representations (Sec. 1.2.1).

In an extension of the RASTA approach, called the MRASTA technique, a bank of

multi-resolution band-pass filters are applied on spectrographic representation of speech [22].

These filters try to emulate the multi-resolution processing performed in the higher stages

of the human auditory processing. A context of 1s is used in these filters and all the

MRASTA filters have the zero mean property which ensures the removal of convolutive

channel artifacts. Significant improvements can be obtained in telephone channel speech

recognition using the MRASTA technique [22].

Modulation Spectrogram

Modulation spectrogram (MSG) [23] refers to a front-end representation for speech signals

derived from filtered trajectories of sub-band AM envelopes. These envelopes are derived

using the half-wave rectification based demodulation methodology (Sec. 1.2.1). The sub-

band envelopes are normalized with a long-term average, down-sampled and low-pass filtered

in the 0 − 8 Hz range with a complex filter. The log-magnitude output of this filter are

used to obtain features. In speech recognition experiments, the MSG front-end provides

good improvements for reverberant data. It also works well in combination with RASTA

processing.

Source Separation

Coherent demodulation provides complex estimates of modulation signal which can be used

for modulation filtering to separate music signals [24]. In this method, a low-pass filter is
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used in the coherent AM signal to separate a flute signal from a castanet signal. Such an

approach has also been extended to separation of overlapped speech [25].

1.2.3 Comments on Past Methodologies

Although a number of approaches have been proposed in the past for deriving modulation

representation of speech/audio signals, most of these approaches have shown to be promising

for a limited set of applications. The applicability could not be extended beyond these tasks

where the short-term spectral approaches continue to remain popular. This is partly due

to the following reason.

The underlying mathematical model defining the AM-FM model is an approxi-

mation under certain assumptions of the modulation/carrier signal which are easily vio-

lated. These properties include basic requirements like linearity and continuity [15]. For

example, the application of demodulation using Teager energy based demodulation yields

unreasonable AM components for wide-band signals [15]. The assumptions of complex rep-

resentation of modulating signal for coherent demodulation is unrealistic for natural signals

like speech/audio. The only methodology which satisfies the linearity and homogeneity

properties is the Hilbert envelope (discussed in detail in Chap. 2). Thus, in this thesis,

we focus on the modeling of the Hilbert envelope using frequency domain linear prediction

(FDLP) [26,27].
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AM−FM Model Applications

AM
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Domain
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(FDLP)

Decomposition

Sub−band
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Short−term Features for
Speech/Speaker Recognition

Modulation Features
Phoneme Recognition

Wide−band Audio Coding

Signal

Input

Figure 1.2: Overview of the proposed AM-FM model and applications.

1.3 Outline of Contributions

In this thesis, we propose a unified method for analyzing the modulation components of

a wide-class of speech/audio signals. The proposed model is based on a technique called

frequency domain linear prediction (FDLP). FDLP refers to the modeling technique of ap-

plying linear prediction on the spectral representation of the signal to derive auto-regressive

(AR) models of the Hilbert envelope of the signal [26,27]. In this thesis, we propose to apply

FDLP for analyzing the sub-band AM-FM components of speech/audio signals. In a vari-

ety of applications, we show that the FDLP approach provides substantial improvements

compared to conventional short-term spectrum based front-end.

A brief outline of the proposed AM-FM model is shown in Fig. 1.2 along with

various applications [28]. Long segments of the input signal are analyzed in sub-bands. In

each sub-band, FDLP is applied to derive sub-band AM and FM components. Typically,

auto-regressive (AR) models have been used in speech/audio applications for representing

the envelope of the power spectrum of the signal by performing the operation of time domain
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linear prediction (TDLP) [29]. This thesis utilizes AR models for obtaining smoothed,

minimum phase, parametric models of temporal envelopes. For the FDLP technique, the

squared magnitude response of the all-pole filter approximates the Hilbert envelope of the

signal (in a manner similar to the approximation of the power spectrum of the signal by

TDLP [29]).

The all-pole parameters of FDLP provide the AM signal and the residual (cor-

responding to the LP error signal in the frequency domain) of the FDLP constitutes the

FM component (carrier). The AM part carries the “message” information of the signal

and is used for speech and speaker recognition applications. In this regard, we develop two

different feature extraction methods -

1. Short-term features obtained by integrating the FDLP envelopes in short-time win-

dows. These are similar to conventional MFCC features.

2. Modulation features which are obtained from syllable length windows (200 ms) of

sub-band envelopes. These features are high dimensional and are useful in phoneme

recognition tasks.

The FM components carry information about the fine structure of the sub-band signal and

enhance the quality of the signal. These are useful in high quality wide-band audio coding

applications where the goal is to preserve the reconstruction quality.

1.4 Road Map for Rest of the Thesis

The organization of various chapters in this thesis is shown in Fig. 1.3. The rest of the

thesis is organized as follows. Chap. 2 describes the FDLP model in detail. It begins

15



CHAPTER 1. INTRODUCTION

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

Chap. 3

Chap. 4
Short−term

Features

Chap. 5

Features
Modulation

Audio Coding

Chap. 6
Gain Norm.

Chap. 7

Extensions

Chap. 2

FDLP

Chap. 1
Outline 

Figure 1.3: Connections among various chapters in this thesis.

with a overview of the past literature on AR modeling of Hilbert envelopes. Then, the

underlying mathematical model of FDLP is developed where we prove the fundamental

result - Application of linear prediction on the DCT of the signal gives an AR

model of the Hilbert envelope of the signal [27]. This proof is derived by the

application of duality concepts to conventional TDLP [29] and is done in discrete signal

domain. We illustrate the AM-FM decomposition properties of FDLP on synthetic as well

as natural signals. The resolution of FDLP modeling is analyzed and the choice of model

order is also discussed.

In Chap. 3, we propose the gain normalization technique for FDLP. We begin with

the discussion of the issue of reverberation in speech processing systems. Then, the gain

normalization procedure is explained which provides robustness to the FDLP representation

in noisy and reverberant environments. The underlying assumption in gain normalization

and its usefulness are analyzed in detail. We use the gain normalization on the FDLP en-
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velopes for speech recognition applications as it provides good robustness without reducing

the performance in clean conditions.

Chap. 4 outlines the speech and speaker recognition experiments using short-term

FDLP features. Speech recognition experiments in mismatched training and test conditions

are also discussed here. In all these experiments, the back-end speech recognition system

is based on Hidden Markov Model-Gaussian Mixture Model (HMM-GMM). These experi-

ments highlight the importance of gain normalization of FDLP envelopes. We also compare

the performance of the proposed features with other robust features extraction techniques

proposed in the past. Speaker recognition experiments are done in matched conditions using

telephone and far-field microphone data.

Modulation features derived from long-term trajectories of FDLP envelopes are dis-

cussed in Chap. 5. We propose a combination of static and dynamic modulation frequency

features for phoneme recognition. We also develop the noise compensation technique for

FDLP envelopes, which tries to provide robustness in additive noise scenarios. These fea-

tures are used in the hybrid hidden Markov model - artificial neural network (HMM-ANN)

system. Experiments are performed in mis-matched train/test conditions where the test

data is corrupted with various environmental distortions like telephone channel noise, ad-

ditive noise and room reverberation. Experiments are also performed on large amounts of

real conversational telephone speech. Furthermore, the contribution of various processing

stages for robust speech signal representation is analyzed.

Audio coding using FDLP technique is described in Chap. 6. We propose a simple

audio-codec which can provide good reconstruction quality for a wide-class of speech and
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audio signals with a bit-rate ranging from 32-64 kbps. We also utilize novel aspects of

temporal masking and spectral noise shaping to improve the performance of the FDLP

codec. The chapter ends with a discussion of the subjective and objective quality evaluations

which compare the FDLP codec with other state-of-the-art speech/audio codecs.

In Chap. 7, future directions and extensions of the FDLP methodology are men-

tioned. The application of FDLP modulation features for speaker recognition is investigated

in detail. In the last part of the chapter, we analyze the fundamental limits and shortcom-

ings of FDLP approach. This would determine the range of applicability of FDLP technique

for speech/audio systems. This chapter also provides a brief summary of the various con-

tributions of this thesis.
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Chapter 2

Frequency Domain Linear

Prediction (FDLP)

2.1 Chapter Outline

In this chapter, we describe the underlying mathematical model of frequency domain linear

prediction (FDLP). We begin by highlighting the properties of analytic signal which make

it an important method for demodulation (Sec. 2.2). Then, we review the past approaches

for AR modeling of Hilbert envelopes (Sec. 2.3). Some relevant details of conventional linear

prediction are reviewed next (Sec. 2.4). This is followed by the extension of conventional

linear prediction to FDLP (Sec. 2.5). We illustrate the AM-FM decomposition of FDLP

using full-band as well as sub-band speech signals (Sec. 2.5.3). The chapter ends with a

discussion of the temporal resolution of the FDLP model and its interaction with the model

order (Sec. 2.6).
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+

H

|   | a(t)

jx(t)
d
dt

φ (t)

ω (t)

Figure 2.1: Demodulation procedure using analytic signal.

2.2 Properties of Analytic signal

In this section, we show some of the useful properties of continuous analytic signal (AS).

We follow the notation used in [15]. Let x(t) denote a real signal of the form,

x(t) = m(t)cos[φ(t)], (2.1)

φ(t) = ω0t+Φ(t), (2.2)

where, m(t), φ(t) and ω(t) = dφ(t)
dt

are the amplitude, phase and frequency modulation (AM,

PM and FM) respectively. The AS is a complex representation of the real input signal given

by (rewriting Eq. 1.1),

xa(t) = x(t) + jH
[

x(t)
]

(2.3)

= m(t)ejφ(t) (2.4)

where the Hilbert transform operator H is defined as1,

H
[

x(t)
]

=
1

π

∫ ∞

−∞

x(τ)

t− τ
dτ (2.5)

1This is derived in Appendix A.1
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Now, the amplitude and phase modulation can be obtained as

m(t) = |xa(t)|, (2.6)

φ(t) = arctan

[

Im{xa(t)}
Re{xa(t)}

]

(2.7)

The demodulation procedure using the analytic signal is outlined in Fig. 2.1. We refer to

this procedure as the AS based demodulation operator.

We can list the desired properties of a well-defined amplitude demodulation oper-

ator. Here, we also show that AS defined in Eq.2.3 satisfies all these properties [15].

1. Amplitude Continuity - In an ideal demodulator, a small variation in the signal

(x(t) → x(t) + δx(t)) should make a small variation in the amplitude modulation

(m(t) → m(t) + δm(t)). This can be guaranteed as the Hilbert transform satisfies,

H
[

x(t) + δx(t)
]

→ H
[

x(t)
]

as δ → 0 (2.8)

and the magnitude of the AS which gives the AM (Eq. 2.6).

2. Homogeneity - Scaling the signal (x(t) → cx(t)) should modify only the amplitude

modulation (m(t) → |c|m(t)) and leaves the frequency modulation unchanged. This

is satisfied by the AS because,

H
[

cx(t)
]

= cH
[

x(t)
]

(2.9)

3. Harmonic Correspondence - A sinusoid (x(t) = cos(ωt)) should have m(t) = 1 and

φ(t) = ωt. This is also satisfied as,

H
[

cos(ωt)
]

= sin(ωt), (2.10)

The above relation is derived in Appendix A.3.
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In fact, it can be shown that the AS is the unique linear operator which satisfies all these

properties [15]. The demodulation using AS can be achieved using Eq. 2.6. Furthermore,

this demodulation gives reasonable results for wide-band noisy signals which may not be

satisfied by other demodulators [15]. Thus, the AS forms a suitable choice for the represen-

tation of modulation information in speech and audio signals.

However, the computation of the AS involves the computation of the Hilbert trans-

form using the Hilbert operator defined in Eq. 2.5. Note that, the Hilbert transform operator

is a filter with infinite impulse response in both directions. This would lead to a number of

difficulties for a finite duration real-valued signal. For example, this would lead to signifi-

cant transients in the analytic signal and alters the characteristics. Hence, it is desirable to

model the Hilbert envelope without the explicit computation of the Hilbert transform.

2.3 Past Approaches in AR modeling of Hilbert Envelopes

2.3.1 Temporal Noise Shaping (TNS)

In audio coding using spectral domain quantization and coding, the quantization noise

involved in encoding transient signals spreads across the entire analysis window causing

distortions called pre-echo artifacts [30]. Temporal noise shaping (TNS) is a technique by

which the quantization noise at the receiver is shaped according to the input signal so that

the noise gets masked by the input signal. Specifically, the TNS implements D∗PCM [31]

in the spectral domain.

Conventional D∗PCM in the time domain relates to the technique where the pre-

diction error of a signal is quantized and transmitted instead of the original signal. In the
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decoder, the quantization noise is filtered with the inverse LP filter which shapes the quan-

tization noise in spectral domain according to the input signal. Combining this observation

with the time-frequency duality, we can conclude that the application of predictive coding

to spectral data over frequency can shape the the quantization error according to be the

temporal shape of the input signal [30]. The inverse filter response in this case is the Hilbert

envelope of the signal.

2.3.2 Linear Prediction in Spectral Domain (LPSD)

A periodic continuous-time band-limited AS xa(t) with a period T and fundamental fre-

quency Ω = 2π
T

can be expanded using the Fourier series as [32]

xa(t) = ejω0t
M
∑

k=0

cke
jkΩt (2.11)

where ω0 represents a frequency translation in order to make summation index between

0 and M . The above expression can be regarded as a polynomial in complex time plane

and the roots of the polynomial can be sorted to those inside the unit circle (equivalent

to minimum phase spectral representation) and those outside the unit circle (equivalent to

maximum phase spectral representation).

xa(t) = a0e
jω0t

P
∏

i=1

(1− pie
jΩt)

Q
∏

i=1

(1− qie
jΩt) (2.12)

where the complex roots |pi| < 1 and |qi| > 1 and P +Q =M . We have also assumed that

none of the zeros fall on the unit circle. The above equation shows that a complex time

domain signal can be split into a minimum-phase, maximum-phase product form (similar to

spectral decomposition of signals into minimum-phase and maximum-phase components).

Further, the minimum-phase component can be modeled using a linear prediction approach.
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For a non-periodic signal observed in a window of finite duration T , the above

expansion can be applied assuming a infinite periodic extension of the signal. Without

trying to root the polynomial for finding the minimum phase component, a linear prediction

model h(t) can be computed which minimizes the energy of error function (e(t)) [26, 33]

∫ T

0
|e(t)|2dt =

∫ T

0
|xa(t)|2|h(t)|2dt (2.13)

where h(t) = 1 +
∑p

k=1 hke
jkΩt. This method is analogous to conventional time domain

linear prediction [29] but the parameters {hk} are estimated as the prediction coefficients

of the Fourier transform of the signal. For a discrete time signal, the coefficients hk can

be estimated in closed form using a set of p equations in p unknowns [26]. The Hilbert

envelope of the signal is obtained as the squared inverse signal response in the time-domain

1
|h(t)|2 . This method results in a prediction error e(t) which is maximum phase signal and

can be applied for AM-FM decomposition of filtered speech signals.

2.3.3 AR Modeling of Temporal Envelopes

The connection between the linear prediction in DCT domain and AR modeling of discrete

time AS is established in [27, 34]. This is an extension of LPSD approach using discrete-

time version of the AS. Strictly speaking, an AS cannot be defined for a discrete signal

as the spectrum is periodic. However, by limiting the spectrum to positive frequencies in

[−π, π] range, we can define a discrete version of the AS [35]. The squared magnitude of

the discrete AS (Hilbert envelope) can be approximated using a linear prediction on the

DCT components of a signal. This method is named as frequency domain linear prediction

(FDLP). The FDLP method forms the basis for our thesis and we derive some of the
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relations in the underlying model in Sec. 2.5.

An extension of this approach was proposed for feature extraction of speech called

LP-TRAPS [36]. Here, the AR model of Hilbert envelopes is computed in bark-sized sub-

bands with a context of 1s. The LP coefficients are converted to temporal cepstra in each

band and used to train a TRAP TANDEM system [36].

2.4 Linear Prediction

In signal processing theory, time and frequency are two types of dimensions for

expressing the information in the signal. One can shift between these two domains using the

Fourier transform. Duality is defined as the phenomenon for describing the properties which

are identical in time and frequency domains. For example, using the Parseval’s theorem, it

can be shown that the sum of the squared magnitude in two domains are the same.

In the case of linear prediction, we first show that linear prediction in time-domain

estimates the AR model of power-spectrum of the signal. Then, we invoke duality properties

to extend the application of linear prediction in the frequency domain.

2.4.1 Time Domain Linear Prediction (TDLP)

In this section, we review some of the mathematical relations underlying the conventional

time domain linear prediction. We begin the signal processing relations between the auto-

correlation of the signal and power spectral density. Then, we write the linear prediction

model in the time domain and provide a filter interpretation of the optimization involved.

Some of these relations are stated without proof. More details including mathematical
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derivations can be found in [29, 37].

Auto-correlation and Power Spectrum

Let x[n] denote a discrete time signal for a finite window of length N . Let rx[τ ] denote the

auto-correlation sequence with lag τ ranging from −N + 1, ..., N − 1 defined as,

rx[τ ] =
1

N

N−1
∑

n=|τ |
x[n]x[n− |τ |] (2.14)

Note that rx[τ ] represents a biased estimator of the auto-correlation. Let x̂[n] denote the

zero-padded input signal,

x̂[n] =























x[n] for n = 0 , .., N − 1

0 for n = N, ... ,M − 1

(2.15)

and M = 2N − 1. Then, X̂[m] denoting M point DFT sequence is,

X̂[m] =
N−1
∑

n=0

x[n]e−j 2πnm
M (2.16)

for m = 0, ..., M − 1. It can be shown that auto-correlation sequence rx[τ ] is the inverse

DFT of the power spectral density Px[m] = |X̂[m]|2, i.e.,

rx[τ ] =
1

N

M−1
∑

m=0

|X̂[m]|2ej 2πmτ
M (2.17)

for τ ranging from 0, ..., N − 1 and rx[−τ ] = rx[τ ] for rest of the values of τ .

LP Problem Definition

The time domain linear prediction problem can be stated as follows - The goal is to identify

the set of coefficients { ak, k = 1, ... , p } such that error signal e[n] defined as

e[n] = x[n]−
p

∑

k=1

akx[n− k] (2.18)
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has minimal energy Ep =
∑N−1

n=0 |e[n]|2.

Multiplying both sides of Eq. 2.18 by x[n − τ ] and summing it over n, we get

(assuming signal values are 0 outside the observation interval)

rx[τ ] =

p
∑

k=1

akrx[τ − k], for τ = 1, .. , p (2.19)

G = Êp = rx[0]−
p

∑

k=1

akrx[k]. (2.20)

These equations are called Yule-Walker equations and these can be solved in a closed form

to yield the set of predictor coefficients { ak }.

Filter Interpretation

Let the sequence d[k] be defined as d[0] = 1, d[k] = −ak. Then, Eq. 2.18 can be rewritten

as,

e[n] = x[n] ∗ d[n], (2.21)

where ∗ denotes a convolution operator. The energy of the error signal can be interpreted

as the (using Parseval’s theorem)

Ep =
1

2π

∫ π

−π

|E(ejω)|2dω =
1

2π

∫ π

−π

|X(ejω)|2
|H(ejω)|2dω (2.22)

where E(ejω), and X(ejω) denote the DTFT of e[n] and x[n] respectively and H(ejω) =

1
D(ejω)

denotes the inverse filter response. Thus, the goal of the TDLP problem can be

restated in the frequency domain as that of finding an inverse filter H(ejω) which minimizes

Ep in Eq. 2.22.

The particular form of the error function means that the inverse filter response fits

the peaks of the signal power spectrum |X(ejω)|2 much more than the valleys. Further, it
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Figure 2.2: Illustration of the all-pole modeling property of the TDLP model. (a) Portion
of speech signal, (b) Power spectrum and the TDLP approximation.

can be shown that the optimal set of coefficients {a0 = 1, ak, k = 1, ... , p} define a all-pole

minimum phase2 model of the power spectrum of the signal [29] given by,

P̂x[m] =
G

|∑p
k=0 ake

−j2πmk|2 (2.23)

An illustration of the TDLP model is shown in Fig. 2.2. In this figure, we plot a portion

of voiced speech signal, its power spectrum Px[m] and the corresponding TDLP estimate

P̂x[m]. We use a model order of 12 for TDLP.

From the review of TDLP, we can state that

2The minimum phase property of TDLP is derived in Appendix B
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Proposition 1. The application of linear prediction in one domain will result in all-pole

minimum phase approximation of the squared magnitude of the dual domain

In the case of TDLP using time-domain auto-correlations (Eq. 2.14), Prop. 1 means

that LP model obtained by solving (Eq. 2.19) approximates the power spectrum (Eq: 2.17).

This proposition can be extended to modeling of temporal envelopes. For modeling the

Hilbert envelope of the signal, we need to apply linear prediction in its dual domain. In the

next section, we show that the dual of the Hilbert envelope is the auto-correlation of the

DCT sequence. Therefore, this implies that the application of linear prediction on

the DCT of a signal results in the AR model of the Hilbert envelope.

2.5 Frequency Domain Linear Prediction (FDLP)

Linear prediction in the spectral domain was first proposed by Kumaresan [26]. The analog

signal theory is used for developing the concept and the extension of the solution for a

discrete-sample case is provided. This was reformulated by Athineos [27, 34] using matrix

notations and the connection with DCT sequence is established. In our case, we derive the

discrete-time relations underlying the FDLP model without using matrix notations3. This

method mainly uses Fourier transform relations and AS spectrum definition. The proposed

derivation is simplistic and uses a mild assumption on the input signal.

In this section, we show the fundamental relation which relates the auto-correlation

of the DCT of the signal and the Hilbert envelope and use some of the properties of TDLP

stated in Sec. 2.4 to develop the FDLP model. The section ends with a comparison of the

3This derivation is identical to the matrix notation based derivation given in [27]. The arguments have
been reformulated here to be more simplistic.
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TDLP and FDLP techniques.

2.5.1 Discrete-Time Analytic Signal

The continuous time analytic signal (AS) defined by Gabor [12] has the property

that the spectrum of the AS is non-zero only for positive frequencies. However, for a

discrete-time signal, the DTFT spectrum is periodic with period of 2π and therefore cannot

be completely causal in the spectral domain. Thus, there is a need to define properties of

“analytic” like discrete signals.

The two-main properties of the continuous time AS (other than causal spectral

property) are that the real part of the AS corresponds to the observed signal and the real

and imaginary parts of the AS are orthogonal to each other. In a discrete-time case, a

“analytic” signal can be defined which satisfies these two properties [35]. The procedure for

defining the AS xa[n] of a discrete sequence x[n] are -

1. Compute the N-point DFT sequence X[k]

2. Find the N-point DFT of the AS as,

Xa[k] =































































X[0] for k = 0

2X[k] for 1 ≤ k ≤ N
2 − 1

X[N2 ] for k = N
2

0 for N
2 + 1 ≤ k ≤ N

(2.24)

3. Compute the inverse DFT of Xa[k] to obtain xa[n]
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It can be shown that the above definition of discrete-time AS satisfies the required proper-

ties,

Re
{

xa[n]
}

= x[n] (2.25)

N−1
∑

n=0

Re
{

xa[n]
}

Im
{

xa[n]
}

= 0 (2.26)

2.5.2 Relation between Auto-correlations of DCT and Hilbert Envelope

We assume that the discrete-time sequence x[n] has a zero-mean property in time and

frequency domains, i.e., x[0] = 0 and X[0] = 0. This assumption is made so as to give

a direct correspondence between the DCT of the signal and DFT [27]. Further, these

assumptions are mild and can be easily achieved by appending a zero in the time-domain

and removing the mean of the signal. Some of the relations shown here are a re-formulation

of the previous work done in [27].

The type-I odd DCT y[k] of a signal for k = 0, ... , N − 1 is defined as [31]

y[k] = 4

N−1
∑

n=0

cn,kx[n] cos
(2πnk

M

)

(2.27)

where the constants cn,k = 1 for n, k > 0 and cn,k = 1
2 for n, k = 0 and cn,k = 1√

2
for the

values of n, k, where only one of the index is 0. The DCT defined by Eq. 2.27 is a scaled

version of the original orthogonal DCT with a factor of 2
√
M .

We also define the even-symmetrized version q[n] of the input signal,

q[n] =























x[n] for n = 0 , .., N − 1

x[M − n] for n = N, ... ,M − 1

(2.28)
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TDLP FDLP

Signal x[n] DCT y[k]

Zero-padded signal x̂[n] Zero-padded DCT ŷ[k]

Spectrum X̂[m] Even-symmetric AS qa[n]

Autocorr. rx[τ ] Autocorr. of DCT ry[τ ]

Power Spectrum |X̂[m]|2 Even-symmetric Env. |qa[n]|2

x̂ = F−1{X̂} ŷ = F{qa}

rx = F−1{|X̂|2} ry = F{|qa|2}

Table 2.1: Summary of the dual notations used in TDLP and FDLP.

where M = 2N − 1. An important property of q[n] is that it has a real spectrum given by,

Q[k] = 2
N−1
∑

n=0

x[n] cos
(2πnk

M

)

(2.29)

for k = 0, ... ,M − 1.

For signals with the zero-mean property in time and frequency domains, we can

infer from Eq. 2.27 and Eq. 2.29 that,

y[k] = 2Q[k] (2.30)

for k = 0, ... , N−1. Let ŷ denote the zero-padded DCT with ŷ[k] = y[k] for k = 0, ... , N−1

and ŷ[k] = 0 for k = N, ... ,M −1. From the definition of Fourier transform of the analytic

signal in Eq. 2.24, and using the definition of the even symmetric signal in Eq. 2.28, we find

that,

Qa[k] = ŷ[k] (2.31)
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for k = 0, ... ,M −1. This says that the AS spectrum of the even-symmetric signal is equal

to the zero-padded DCT signal. In other words, the inverse DFT of the zero-padded DCT

signal is the even-symmetric AS. This is similar to the relation between the zero-padded

signal x̂[n] (defined in Eq. 2.15) and its Fourier transform X̂[m] defined in Eq. 2.16. Since

the auto-correlation of signal x[n] is related to the power spectrum |X̂[m]|2 (Eq. 2.17), we

can obtain a similar relation to the auto-correlation of the DCT sequence. In order to clarify

the analysis, we have illustrated the various duality relation in Table. 2.1.

The auto-correlation of the DCT signal is defined as (similar to Eq. 2.14),

ry[τ ] =
1

N

N−1
∑

k=|τ |
y[k]y[k − |τ |] (2.32)

From Eq. 2.31, the inverse DFT of zero-padded DCT signal ŷ[k] is the AS of the even-

symmetric signal (similar to Eq. 2.16). Analogous to Eq. 2.17, it can be shown that,

ry[τ ] =
1

N

M−1
∑

n=0

|qa[n]|2e−j 2πnτ
M (2.33)

i.e., the auto-correlation of the DCT signal and the squared magnitude of the AS (Hilbert

envelope) of the even-symmetric signal are Fourier transform pairs. This is exactly dual to

the relation in Eq. 2.17.

By invoking Prop. 1, we can deduce that

Proposition 2. Proposition Linear prediction of DCT components results in AR model of

the Hilbert envelope of the even-symmetrized signal.

In deriving this proof, one could relax the mild assumptions of zero-mean property

in time and frequency domains and prove the above result for a general signal. But, this

would mean the modification of the definition of the DCT to account for the scaling of
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the first DCT index [27]. Once the set of FDLP coefficients {ak} are estimated by linear

prediction on DCT, the resulting FDLP envelope is given by,

Êx(n) =
G

|∑k=p
k=0 ake

−i2πkn|2
(2.34)

It is important to note that the above analysis is valid only for the type-I odd DCT

(Eq. 2.27) which is directly related to the DFT. Although, AR modeling on other types of

DCT has been studied in the past [38], we limit the scope of this thesis to the type-I odd

DCT. In the next section, we show the illustration of the FDLP model for speech examples.

2.5.3 Examples

FDLP versus TDLP

The comparison the TDLP and FDLP is shown in Fig. 2.3. Here we plot (a)

a portion of a speech signal, (b) the power spectrum and its approximation by TDLP

model and (c) the Hilbert envelope computed using the DFT technique (Eq. 2.24) and the

FDLP envelope. Both these AR modeling techniques approximate the peak regions more

accurately than the valleys. This is useful in speech applications as the high-energy regions

are perceptually more important. Later in the thesis, we show that this property is also

useful in robust representation in the noisy and reverberant environments.

FDLP Modeling of Full-Band Speech

Unlike some of the other methods of demodulation discussed in Sec. 1.2.1, the

FDLP method can be used to summarize the energy variations of long temporal regions
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Figure 2.3: (a) A portion of speech signal, (b) Spectral AR model (TDLP) and (c) Temporal
AR model (FDLP).

of wide-band speech signals. We demonstrate this property in Fig. 2.4. where we plot a

portion of speech signal, its Hilbert envelope computed from the analytic signal [35] and the

AR model fit to the Hilbert envelope using FDLP. The peaks in the FDLP model correspond

to pole locations and the number of peaks is at most equal to half the model order used in

FDLP. In this figure, we use a model order of 40 on the full-band signal of duration 500 ms.

AM-FM Decomposition Using FDLP

For many modulated signals in the real world, the quadrature version of a real

input signal and its Hilbert transform are identical [14, 15]. This means that the Hilbert

envelope is the squared AM envelope of the signal and the operation of FDLP estimates the
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Figure 2.4: Illustration of the AR modeling property of FDLP. (a) a portion of speech
signal, (b) its Hilbert envelope and (c) all pole model obtained using FDLP.

AM envelope of the signal and the FDLP residual contains the FM component of the signal.

AM-FM decomposition using FDLP technique consists of two steps. In the first step, the

envelope of the signal is approximated with an AR model by using the linear prediction in

the DCT domain. The resulting residual signal is obtained by dividing the original signal

with the AR model of the Hilbert envelope obtained in the first step [26]. This forms a

parametric approach to AM-FM decomposition of a signal. FM components are used in

audio coding applications (Chap. 6).

Speech signals in sub-bands are modulated signals [18] and hence, FDLP technique

can be used for AM-FM decomposition of sub-band signals. An illustration of the AM-
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Figure 2.5: Illustration of AM-FM decomposition using FDLP. (a) a portion of band pass
filtered speech signal, (b) its AM envelope estimated as square root of FDLP envelope and
(c) the FDLP residual containing the FM component.

FM decomposition using FDLP is shown in figure 2.5, where we plot a portion of band

pass filtered speech signal, its AM envelope estimate obtained as the square root of FDLP

envelope and the FDLP residual signal representing the FM component of the band limited

speech signal. Note that, the estimation of the FM component is an ill-defined problem

when the signal value approach zero. This has been observed before in AM-FM estimation

techniques proposed in the past (For example, LPSD approach [26]).

Although we have illustrated the process of AM estimation using FDLP, the re-

solving power of FDLP model for signals with closely spaced peaks is unclear. This is
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Figure 2.6: Plot of 125 ms of input signal in time domain (a), (c) and the corresponding
log FDLP envelopes (b), (d).

important as the result of the resolution analysis may provide insight to the selection of

the model-order as well as the choice of DCT window type. These studies can be analo-

gously extended to determine the spectral resolution of a TDLP model. To the best of our

knowledge, these studies have not been done in the past for TDLP.

2.6 Temporal Resolution Analysis in FDLP

In this section, we analyze the temporal resolution in FDLP models using signals

with distinct temporal peaks (impulses). We use artificial signals for this analysis and

compute FDLP models on the full-band DCT signal (as opposed to sub-band FDLP models

used in speech feature extraction discussed in Chap. 4). The main factors considered here
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are the type of the DCT window, relative position of the temporal peak within the analysis

window, model order for FDLP and type of LP method used (auto-correlation LP versus

least squares LP). Before we discuss the resolution properties of FDLP, we propose an

objective method to determine temporal resolution.

2.6.1 Defining the Temporal Resolution

We generate a signal with two peaks as shown in Fig. 2.6(a). The FDLP envelope

of this signal (Fig. 2.6(c)) is computed by the application of linear prediction on DCT com-

ponents. As seen in Fig. 2.6(a),(c), if the input signal has peaks which are far enough, two

distinct peaks emerge in the FDLP envelope. As the spacing between the input peaks is de-

creased (Fig. 2.6(b)), the resulting peaks in the FDLP envelope start merging (Fig. 2.6(d)).

The time interval between the two peaks in the input signal below which the resulting peaks

in the FDLP envelope merge to form a single peak is referred to as the critical time-span.

We define the resolution as the inverse of the critical time-span. We obtain the normalized

resolution by dividing the resolution with the maximum possible resolution - the inverse of

the minimum duration between the input signal peaks. In order to determine the resolution

of the FDLP model, we use a peak picking mechanism on the log FDLP envelope.

In the discussions that follow, the input signal has two distinct peaks and the

interval between the two peaks is varied. The FDLP envelope for this signal is input to the

peak picking algorithm and the critical time-span is used to calculate the resolution.
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Figure 2.7: Normalized resolution in FDLP as function of the location of the first peak for
a 125 ms long signal. (a) Two LP methods, (b) Various DCT windows, (c) FDLP model
order and (d) symmetric padding at the boundaries.

2.6.2 Effect of Various Factors on Resolution

We analyze the effect of various factors on the temporal resolution, namely 1) the

method of computing the linear prediction coefficients, 2) different types of window on the

DCT signal, and 3) the FDLP model order. The main aspect of interest is the variation

of the resolution as a function of the location of the first peak within the analysis window

(Fig. 2.7) for a 125 ms signal (1000 samples at 8 kHz).

As shown in Fig. 2.7, we find that the resolution is not uniform within the analysis

window and it is relatively poor at the boundaries of the analysis window. Fig. 2.7 (a) shows

that the resolution can be improved by least-squares linear prediction method replacing the

standard auto-correlation method. The main drawback of the least-squares method is that

the resulting AR model may be unstable (the roots of the AR polynomial lying outside
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the unit-circle). However, as observed in TDLP studies [29], this can be partially alleviated

when the number of samples N is significantly larger than model order p. Fig. 2.7 (b) shows

that the Gaussian window in the DCT domain provides good temporal resolution among

various window types considered here4. An increase in the model order also improves the

resolution as shown in Fig. 2.7 (c). However, a significant increase in the model order may

result in the modeling of finer temporal details in the signal which are more vulnerable to

noise.

In Fig. 2.7 (d), we provide one possible solution for improving the resolution at the

boundaries of the analysis window. This is done by symmetric padding of the signal at the

beginning and end of the analysis window. Once the FDLP envelope is derived, the portion

of the envelope in the padded regions can be ignored. This eliminates the lower resolution

parts of the FDLP model and improves the temporal resolution within the region of interest.

We find that about 32 ms of padding provides good resolution at the boundaries.

In order to illustrate the effect of improved resolution in clean and noisy speech signals,

the FDLP envelopes are estimated from sub-band (700-1100Hz) DCT components for clean

speech and noisy speech (babble noise at 10 dB). Fig. 2.8 (a) and (b) shows the plot of the

envelopes without and with the modifications developed for higher resolution. As seen in

this figure, estimating high resolution envelopes from noisy speech reduces the mismatch

between clean and noisy conditions without making any assumptions about the noise.

4In other experiments, Hanning window also provided high resolution as there are no discontinuities at
the edges. The effect of window type on the final resolution is not completely understood and further analysis
may be required.
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2.7 Chapter Summary

In this chapter, we have described various methods for AR modeling of Hilbert

envelopes. An outline of the important results in deriving the conventional TDLP was

given. Then, a detailed derivation of the underlying model of FDLP was provided. The

properties of FDLP for AM-FM decomposition were illustrated with a few examples and

the effect of various parameters on the temporal resolution of FDLP was also investigated.

In the succeeding chapters, we extend the FDLP model for various speech and

audio applications. A number of other parameters in the FDLP model, like the duration

of the temporal analysis window, the type of sub-band decomposition, DCT window shape

and importance of the gain parameter G will also be investigated. An optimal choice of

these parameters is chosen for recognition experiments based on the performance in clean
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and noisy conditions (discussed in Chap. 4).

In the next chapter, we focus the effect of reverberation on the gain parameter

and provide a solution for robust representation in the presence of these artifacts.
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Chapter 3

Gain Normalization of FDLP

Envelopes

3.1 Chapter Outline

Reverberation continues to be a challenging problem for speech recognition sys-

tems as it causes mis-match in training and test conditions. This results in a significant

degradation in performance. In this chapter, we try to address this issue by developing the

gain normalization technique for FDLP which attempts to create a robust representation

in the reverberant environments.

We begin the chapter with a discussion of the problem of reverberation as a long-

term convolutive artifact (Sec. 3.2). Some of the methods proposed in the past to deal

with reverberation artifacts in speech recognition are reviewed next (Sec. 3.3). The effect of

reverberation on sub-band Hilbert envelopes is analyzed in Sec. 3.4. Then, we propose the

44



CHAPTER 3. GAIN NORMALIZATION OF FDLP ENVELOPES

gain normalization technique which attempts to suppress reverberation artifacts (Sec. 3.5.

This is illustrated using a few examples of reverberant speech signals (Sec. 3.6). The chap-

ter ends with a discussion on the application of gain normalization for speech recognition

(Sec. 3.7).

This chapter does not discuss the speech recognition experiments using the gain

normalization technique. These results are described in Chap. 4

3.2 Room Reverberation

When speech is recorded in far-field reverberant environments, the data collected in

the microphone consist of the direct speech component superimposed with multiple number

of reflections. These reflections present themselves as delayed and attenuated versions of

the original signal. The superposition can be modeled as a convolution of the clean speech

signal with the room response function, i.e.,

r(t) = x(t) ∗ h(t), (3.1)

where s(t), h(t) and r(t) denote the original speech signal, the room impulse response and

the reverberant speech respectively. If we apply a long-term Fourier transform, we can

write,

R(k) = X(k)×H(k). (3.2)

For Eq. 3.2 to be valid, the Fourier transforms R(ω), X(ω) and H(ω) have to computed

using segments which are longer than the duration of h(t). However, a room response is

generally not time-limited. The amount of reverberation in speech is generally characterized
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by reverberation time (T60). T60 denotes the amount of time required for the reverberant

signal to reduce by 60 dB from the initial direct component value. The value of T60 ranges

from 200ms-800ms for typical meeting room scenarios. Human speech perception can toler-

ate moderate levels of reverberation. For highly reverberant environments (with high values

of T60), the speech intelligibility reduces [20].

The effect of reverberation on the short-time Fourier transform (STFT) (defined

in Eq. 1.3) can be represented as a convolution,

R(t, ω) = X(t, ω) ∗
[

h(t)ejωt
]

, (3.3)

where S(t, ωk) and R(t, ωk) are the STFT’s of the clean speech signal s(t) and reverberant

speech r(t) respectively. Thus, convolution of the signal in the time-domain (Eq. 3.1) would

result in a convolution of the STFT for each frequency component with the room impulse

response. In the case of room reverberation h(t) with large T60 values and for STFT window

length which is smaller than the T60, the STFT of clean speech, X(t, ω), cannot be easily

recovered from R(t, ω). For speech recognition models which are trained using STFT’s of

clean speech, this would create a high degree of mis-match.

In the next section, we review some of the approaches proposed in the past to deal

with the mis-match caused by convolutions. Some of these approaches are based on STFT

for removing short-term distortions. However, they do not entirely suppress the long-term

artifacts like room-reverberation.

46



CHAPTER 3. GAIN NORMALIZATION OF FDLP ENVELOPES

3.3 Past Approaches For Suppressing Convolutive Artifacts

3.3.1 Cepstral Mean Subtraction (CMS)

Cepstral mean subtraction is the technique of removing linear distortions and

short-term convolutive artifacts by removing the mean of the cepstral sequence [39]. When

speech signal is convolved with a linear channel (similar to Eq. 3.1) with the duration of

the response smaller than the STFT analysis window, the STFT of the convolved output

can be written as,

R(t, ω) ≃ H(ω)X(t, ω) (3.4)

For feature extraction in speech, the STFT magnitudes are typically warped to a non-

linear frequency scale by a weighted summation. Log-DCT is applied to obtain the cepstral

sequence. In the cepstral domain, this distortion will appear as an offset term, i.e., every

cepstral frame will have a frame-independent additional term from the channel [39]. Thus,

removing the mean of the cepstral sequence computed over the utterance (assuming the

channel is stationary) can remove this convolutive artifact.

However, the fundamental assumption in Eq. 3.4 is the short-term nature of re-

sponse function h(t). For reverberation artifacts, the typical response function is much

longer in duration compared to the STFT window (w(t)) length. If the response function

h(t) is assumed to be the sum of early reflections hl(t) (which last only up to the dura-

tion of w(t)) and late reflections he(t) (which represents the remaining part of the response

function h(t)), then the CMS technique can suppress the early reflection part. The late

reflections are not removed in the CMS approach.
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3.3.2 Log-DFT Mean Normalization (LDMN)

In CMS, there is an underlying assumption that the channel response is constant

in each critical band. However, the typical response functions do not have a constant value

in each critical band and thus, the mean subtraction should be done in a linear frequency

scale [40] (as opposed to the mean subtraction in a warped frequency scale done in CMS).

Log-DFT mean normalization technique (LDMN) tries to remove channel distor-

tions by removing mean of the log STFT magnitude in a linear frequency scale [40]. For

speech recognition experiments the LDMN approach performs better than the CMS tech-

nique as the assumptions on the channel response are less stringent. However, the LDMN

approach also suffers from the late reflections as this approach (similar to the CMS) can

effectively suppress only the early reflection part.

3.3.3 Long-term Log Spectral Subtraction (LTLSS)

In order to make the mean subtraction effective in reverberant conditions, it is

necessary to estimate the log-spectrum from long-term windows. This would mean that

the window length is longer than the T60 of the room response function. By deriving long-

term spectrum of speech, the room response function will be multiplicative in the spectral

domain (similar to Eq. 3.4) and additive in the log-spectral domain. The mean of long-

term log-spectrum computed from a sequence of windowed speech segments can be used

as an estimate of the log-spectrum of the room response function. A mean subtraction in

log-spectral domain can achieve the desired robustness.

This approach was used in [41] to suppress the reverberation artifacts of speech
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signal. The method involves the subtraction of a mean estimate of the log spectrum using a

long-term (2s) analysis window, followed by overlap-add re-synthesis to obtain the enhanced

speech. The processed signal is used for speech recognition in reverberant environments

where the LTLSS method provides good improvements.

The underlying assumption in LTLSS is that the room-response is stationary over

the window of the mean computation. Since the mean is computed on set of long-term log-

spectral frames, the window of mean computation is substantially long (of the order of 30s

obtained by concatenating all speech files from the same speaker [41]). Thus, the technique

requires the recording of long-segments of speech from the same speaker and environment.

However, the approach is effective for scenarios where such long-segments are available.

3.4 Envelope Convolution Model

In Chap. 2, we had developed the FDLP technique as an AM-FM model for the

analysis of speech signal in sub-bands. In particular, the FDLP model estimates the AM

component of the signal (Sec. 2.5). Since the AR model estimates the peaks with high

accuracy, these estimates are relatively well preserved in noisy conditions. Thus, we can in-

tuitively claim that FDLP based approaches should provide robust representation of speech

signals. If the FDLP model is applied for processing a speech signal in reverberant envi-

ronments, the resulting AM envelopes are modified. In this section, we analyze the effect

of the room-reverberation on these envelopes.

Specifically, we show the relation between AM component of the reverberant signal

and the AM component of clean speech. For narrow band signals analyzed in long-temporal
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windows, it can be shown that the envelope of reverberant signal is equal to the convolution

of the clean speech envelope and room response envelope except for a scaling factor [42].

Let xq(t), hq(t) and rq(t) denote the sub-band clean speech, room-response and

the reverberant speech respectively and q = 1, ... , Q denote the sub-band index. Assuming

an ideal band-pass filtering we can write (using Eq. 3.1),

rq(t) = xq(t) ∗ hq(t). (3.5)

Now, the analytic signal raq(t) = rq(t) +H[rq(t)] can be shown to be (Appendix A.3),

raq(t) =
1

2
xaq(t) ∗ haq(t), (3.6)

Using the polar form of the analytic signal (Eq. 2.4), we can write,

mr(t)e
jφr(t) =

1

2

∫ ∞

−∞
mx(t− τ)ejφx(t−τ)mh(τ)e

jφh(τ)dτ (3.7)

wheremr(t), mx(t), mh(t) denote the sub-band AM component of reverberant speech, clean

speech and room response respectively and φr(t), φx(t), φh(t) denote the sub-band phase

modulation component of reverberant speech, clean speech and room response1.

For a narrow-band analysis (Q >> 1) on long-term segments, we can approximate

the phase modulation components of clean speech and room response as [42],

φx(t) = ω0t+Φq(t), (3.8)

φh(t) = ω0t (3.9)

where ω0 denotes the center frequency of the narrow band q. Further, if phase modulation

Φq(t) in speech is assumed to be slowly varying compared to the envelope, we can write

1Note that, we have dropped the sub-band index sub-script on the modulation components for
convenience.
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Eq. 3.7 as,

mr(t)e
jφr(t) ≃ 1

2
ej(ω0t+Φq(t))

∫ ∞

−∞
mx(t− τ)mh(τ)dτ (3.10)

Applying magnitude on both sides, we get the relation between AM components of the

reverberant signal and the clean speech signal.

mr(t) ≃
1

2
mx(t) ∗mh(t), (3.11)

In other words, for each narrow-band, the modulation spectrum of reverberant speech2,

Mr(ω)
F⇐⇒ mr(t), is equal to half the product of modulation spectrum of clean

speech Mx(ω) with that of the room-response function Mh(ω).

In the next section, we use this relation to suppress the effects of reverberation

artifacts in speech signals.

3.5 Robust Envelope Estimation With Gain Normalization

In this section, we extend the analysis of Sec. 3.4 to develop the gain normaliza-

tion technique [43]. In order to develop this extension, we use an assumption about the

characteristics of typical room-response functions. When speech is analyzed over long-term

windows in narrow sub-bands (band-width less than 100 Hz), the modulation spectrum of

the room-response function can be assumed to be flat compared to the modulation spectrum

of clean speech signal. For example, the sub-band (750− 850 Hz) modulation spectrum of

clean speech3 envelope (Mx(ω)) is shown in Fig. 3.1(a). Similarly, the sub-band modulation

2The definition of the modulation spectrum used here is different from the modulation spectrum used
in Chap. 5. In Chap. 5, we obtain the modulation spectrum as the Fourier transform of the compressed
envelope. For defining the modulation spectrum here, we do not apply any compression.

3We use the clean speech data from TIDIGTS database - “FAK 86Z1162A.wav”
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Figure 3.1: (a) Spectrum of a clean speech envelope for a narrow-band signal (b) Spectrum
of a typical room-response envelope for a narrow-band signal (small dynamic range).

spectrum of room-response function (Mh(ω)) for a typical room-impulse response4 function

(with T60 = 700ms) is shown in Fig. 3.1(b). As seen in this figure, Mh(ω) has a lower

variance5 compared to Mx(ω).

Here we also note that, the reduced dynamic range for the modulation spectrum

of room-response function is valid only for a narrow-band decomposition. As an illustration

4This room-response function is obtained from the ICSI meeting recorder digits (IR00M1) -
“http://www.icsi.berkeley.edu/speech/papers/asru01-meansub-corr.html”

5Note that, the reduced variance and flatness of the spectrum implies that the corresponding envelope
has a smaller support in time domain.
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Figure 3.2: (a) Spectrum of a clean speech envelope for a wide-band decomposition (b)
Spectrum of a typical room-response envelope for a wide-band decomposition (large dynamic
range compared to Fig. 3.1 (b)).

of this concept, we plot (a) Mx(ω) and (b) Mh(ω) for a wide-band signal (critical band

with a bandwidth 300-1300 Hz) in Fig. 3.2. As seen in this figure, the modulation spectrum

of room-response function has a higher dynamic range (the dynamic range in this case is

about 30 dB as opposed to 10 dB for a narrow-band analysis in Fig. 3.1) and therefore

cannot be assumed to be flat. For the rest of the analysis, we assume a narrow band

decomposition and use the flatness property of Mh(ω). In Chap. 4, we also show that

narrow-band decomposition improves the speech recognition in reverberant environments.

For a first order approximation, the modulation spectrum of the room-response

function, Mh(ω) can be assumed to be a constant Hq. This constant value is different

for each sub-band and the approximation is satisfied only for narrow-band analysis. In

Sec. 3.4, we have seen that the long-term AM envelopes of reverberant speech follow a
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Figure 3.3: Summary of the assumptions made for reverberant signal. The effect appears
as a modification of the gain of the sub-band FDLP model in narrow bands.
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convolution model (Eq. 3.11). When Mh(ω) is a constant, the envelope of reverberant

speech is approximated as mr(t) ≃ Hq

2 mx(t).

In the FDLP technique, this approximation would mean that auto-correlations

of each sub-band DCT signal (ry[τ ] defined in Eq. 2.33) would be scaled by an unknown

constant
H2

q

4 . In a linear prediction framework, scaling the auto-correlations by a constant

would alter only the gain of the LP model G, and the predictor coefficients { a1, a2, ..., ap }

are unaltered.

Therefore, we arrive at the following proposition,

Proposition 3. The effect of room reverberation in narrow sub-bands can be suppressed by

setting the gain of the FDLP model to unity.

Using G = 1, the shape of the sub-band FDLP envelope is not modified. A scale

factor alone is removed over the entire trajectory. The gain normalized FDLP envelopes in

each band are derived (similar to Eq. 2.34) as,

Êx(n) =
1

|∑k=p
k=0 ake

−i2πkn|2
(3.12)

It is important to note that the suppression of long-term artifacts like reverberation (using

gain normalization) also performs the suppression of short-term artifacts like linear channel

distortions (equivalent to CMS). This is possible because short-term response function can

fit well inside the analysis window and the envelope convolution model is satisfied.

We summarize the assumptions used in the suppression of the room-reverberation

in Fig. 3.3. The effect of reverberation at the signal and sub-band level is that of a con-

volution. For narrow-band analysis, we can represent this effect as the convolution of the

envelope of the sub-band signal. The modulation spectrum of the sub-band room-response
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Figure 3.4: Log FDLP envelopes for clean and reverberant speech for sub-band 750 − 850
Hz. (a) without gain normalization (b) with gain normalization.

signal is slowly varying and can be assumed to be constant and therefore, the sub-band

modulation spectrum of the clean speech signal is multiplied by an unknown constant to

obtain the modulation spectrum of the reverberant speech. This would appear as a modifi-

cation of the gain of the sub-band FDLP model. Thus, a gain normalization procedure can

be applied to suppress reverberation artifacts.

In the next section, we show the application of gain normalization technique for

suppressing reverberation artifacts in sub-band FDLP envelopes.

3.6 Suppressing Reverberation With Gain Normalization

In this section, we illustrate the effect of gain normalization on sub-band FDLP

envelopes in reverberant and noisy conditions. As mentioned in the previous section, the
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Figure 3.5: Log FDLP envelopes for clean and telephone speech for sub-band 750−850 Hz.
(a) without gain normalization (b) with gain normalization.

gain normalization is validated by the use of narrow band analysis in long-term speech

segments. In the following illustration, we use the sub-band decomposition of 96 linear bands

(with a bandwidth of 100 Hz) spaced in the 0− 4 kHz range. The sub-band decomposition

is applied on 3s long speech signal6 by windowing the DCT of the full-band signal.

Fig. 3.4 illustrates the application of gain normalization by plotting a portion of the

sub-band FDLP envelope with and without the gain normalization. We use a model order

of 20 for this illustration. The reverberant speech in this example is obtained by an artificial

convolution of the clean speech with a room-response function obtained from ICSI meeting

room (T60 = 300ms). As seen in this figure, the application of the gain normalization

procedure improves the match between the FDLP envelopes estimated from the clean and

6Speech signal was taken from the TIDIGITS database. File used is “FAK 86Z1162A.wav”
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reverberant speech. This match is relatively better in the high energy peaks of the speech

signal which are perceptually important. When features for speech recognition are derived

from FDLP envelopes, the application of gain normalization increases the invariance of the

features derived in clean and reverberant conditions. This would reflect in an improvement

in performance of these systems in mis-matched train/test conditions (Chap. 4).

As mentioned in Sec. 3.5, the gain normalization also improves the robustness

in short-term telephone distortions. This is illustrated in Fig. 3.5, where we plot the log

FDLP envelopes in clean and telephone channel conditions7. This plot is obtained for a

sub-band 750−850Hz of clean speech and the telephone speech. The telephone data is a re-

recording of the clean speech passed through a telephone channel. As shown in Fig. 3.5(b),

the envelopes extracted in telephone channel conditions match with those obtained from

the clean speech.

3.7 Chapter Summary

In this chapter, we have developed the gain normalization procedure for FDLP

envelopes which improves the robustness in convolutive distortions. We began with a dis-

cussion of the problem of room-reverberation in Sec. 3.2. Some of the past approaches were

outlined in Sec. 3.3. We found that some of these approaches do not effectively suppress

the late reflections in reverberation.

For improving the robustness in the proposed FDLP representation, the effect of

reverberation on sub-band envelopes was derived in Sec. 3.4. With a first-order approx-

7Clean speech signal is taken from 8kHz sampled TIMIT test data and the telephone channel data is
obtained from re-recording of the same file in HTIMIT database. File used is “fjre0 si1746.wav”
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imation and the use of a long-term narrow-band analysis, we have shown that the effect

of reverberation can be suppressed by normalizing the gain of the sub-band FDLP model

(Sec. 3.5).

The application of gain normalization to speech signals affected by room-reverberation

was illustrated in Sec. 3.6. Using this approach, there is a reduction in the mis-match be-

tween the FDLP envelopes derived in clean and reverberant environments.

It is important to note the applicability of gain normalization procedure. The

proposed approach is useful when -

1. Long-segments of the speech signal are available. The length of the segment should

be more than T60 of the room-response function.

2. Narrow-band analysis is possible. The narrower the bandwidth of the sub-band the

better the validity of the assumptions.

3. A delay in speech feature processing can be tolerated. Since the gain normalization

is done over long-segments of the signal, real-time applicability may be affected.

4. When the convolutive artifact has typical room-response characteristics like slowly

varying magnitude of the room-response envelope in sub-bands.

Since the gain normalization approach is simple and effective, we apply this pro-

cedure in all our feature representations for recognition applications. In the next chapter,

we demonstrate these improvements using a number of speech and speaker recognition

experiments.
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Chapter 4

Short-Term Features For Speech

and Speaker Recognition

4.1 Chapter Outline

In this chapter, we propose a feature extraction scheme using sub-band FDLP

envelopes for the recognition applications. The initial analysis provides long-term gain nor-

malized FDLP envelopes. The set of sub-band envelopes are then integrated in short-term

frames (within the long-term FDLP analysis window) to obtain features. These features

broadly represent the information in short-term frames of speech signal and are similar

in nature and characteristics to conventional MFCC features [1]. We call these features

FDLP-Short-term (FDLP-S).

This chapter is organized as follows. In Sec. 4.2, we demonstrate the two-dimensional

time-frequency representation obtained using FDLP. Here, we compare this representation
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Figure 4.1: Block schematic for the deriving sub-band Hilbert envelopes using FDLP.

with the conventional STFT spectrogram for synthetic as well as speech signals. The

short-term feature extraction scheme using FDLP spectrogram is detailed in Sec. 4.3. The

application of FDLP-S features for speech recognition experiments is described in Sec. 4.4.

In these experiments, we also illustrate the usefulness of gain normalization procedure (de-

veloped in Chap. 3). Speaker verification experiments using the FDLP-S feature extraction

scheme is reported in Sec. 4.5. In Sec. 4.6, we summarize the main results and contributions.

4.2 FDLP Spectrogram

FDLP is a technique for AR approximation of the Hilbert envelope of a signal by the

application of linear prediction on the DCT sequence (Sec. 2.5). Sub-band speech and

audio signals are modulated signals and the sub-band FDLP analysis approximates the AM

components (Sec. 2.5.3).

In Fig. 4.1, we show the block schematic for obtaining the sub-band FDLP en-

velopes. Long segments (of the order of several seconds) of the input speech signal are

transformed using the DCT. Sub-band DCT components are obtained by windowing the

DCT sequence using appropriate windows. This idea of restricting the DCT components

to specific sub-bands using DCT windows was originally proposed in [34]. These windows

61



CHAPTER 4. SHORT-TERM FEATURES FOR SPEECH AND SPEAKER
RECOGNITION

can be placed in warped frequency scale (like Bark or Mel scale) or in a linear scale (as

described in Chap. 3) and they can be overlapping. The shape of the window is also a

parameter which is optimized using speech recognition experiments. Linear prediction is

applied on windowed DCT components to obtain sub-band FDLP envelopes.

For example, if the signal is sampled at 8 kHz, we get 8000 DCT coefficients for a

1000 ms window of the signal. These 8000 coefficients are windowed into sub-bands using

windows in the DCT domain. The sub-band Hilbert envelopes are obtained as the squared

magnitude IDFT of the DCT sequence as defined in Eq. 2.31. Then, the auto-correlations

of the DCT sequence (ry[τ ] defined in Eq. 2.32) are obtained as the Fourier transform of

sub-band Hilbert envelopes. Linear prediction using the auto-correlations of the DCT gives

the FDLP envelope (Eq. 2.34).

The whole set of sub-band FDLP envelopes forms a two dimensional (time-frequency)

representation of the input signal energy. These envelopes can be stacked in a row-wise man-

ner to obtain a spectrographic representation (as shown in Fig. 1.1). These spectrographic

representations can be compared with the conventional STFT based representations.

4.2.1 FDLP Spectrogram of Synthetic Signals

We illustrate the temporal resolution of FDLP analysis using a synthetic signal which has a

transient nature in time and frequency domains. We use a signal of total length 1.2s, which

has a sinusoid of 1 kHz for 500 ms, has a spike in the middle of a 200 ms segment followed

by sinusoid of 2 kHz for 500 ms. This signal is sketched in Fig. 4.2. For this signal, we

use 120 linear sub-bands with a FDLP model order of 20 poles per sub-band per second.
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Figure 4.2: An experimental signal with impulsive nature in time-frequency domain used
for the resolution analysis of FDLP spectrogram.
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Figure 4.3: FDLP spectrogram for the signal in Fig. 4.2 using 120 sub-bands and FDLP
model order of 20 poles per sub-band per second.
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Figure 4.4: FDLP envelope of the sub-band around 2 kHz for the signal in Fig. 4.2 with a
FDLP model order of 20 poles per second.

We use the entire signal in the FDLP analysis window. The sub-band FDLP envelopes

are stacked in a row-wise manner to obtain the spectrogram shown in Fig. 4.3. The FDLP

spectrogram provides a good compromise between resolution of the spectral peaks and the

temporal spike. Various other spectrograms obtained by wide-band and narrow-band STFT

for the same signal are shown in Appendix. C.

For the purpose of illustration, we also show the sub-band FDLP envelope for the

band around 2 kHz in Fig. 4.4. This figure shows that the FDLP envelope captures the

high energy regions caused by the second sinusoid. The effects of the sudden onset of the

second sinusoid is also evident in this figure. Further, the disability of the modeling at the

boundaries of the analysis frame appear as artifacts in the FDLP envelope at the starting

and ending location.
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Mel Spectrogram

FDLP Spectrogram

Figure 4.5: Comparison of Mel and FDLP spectrogram for a speech signal. FDLP is applied
on 37 Mel-bands.

4.2.2 FDLP Spectrogram of Speech Signals

The comparison of FDLP spectrogram with conventional Mel spectrogram for a portion

of a speech signal is shown in Fig. 4.5. The Mel spectrogram is obtained using 25 ms

windows with shift of 10 ms. We use 37 mel spaced in power spectrum. For the FDLP

spectrogram, we use Mel-spaced DCT windows which are Gaussian shaped. Although the

frequency resolution of these two spectrograms are similar, the FDLP spectrogram has a
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Figure 4.6: FDLP Short-term (FDLP-S) Feature Extraction Scheme.

better temporal resolution. The transient regions of the signal are well represented in the

FDLP spectrogram.

In the next section, we develop the feature extraction scheme which converts the

FDLP spectrogram to features for speech recognition.

4.3 Short-term Feature Extraction Using FDLP

The block schematic of the FDLP feature extraction is shown in Fig. 4.6. Long segments1

of the speech signal are analyzed using DCT. As mentioned in Sec. 4.2, FDLP is applied

on the windowed DCT components to obtain sub-band envelopes. The number of bands

used for the FDLP-S features is a variable and this parameter is obtained experimentally.

However, note that the gain normalization procedure assumes a narrow-band decomposition

(Sec. 3.5).

In each sub-band, we apply the gain normalization on the FDLP envelopes (de-

scribed in Chap. 3). The set of gain normalized sub-band envelopes are integrated2 in

1Segments of length 10s are analyzed. For speech files with shorter length, we analyzed the entire signal
without windowing and use it as the input to DCT.

2Another choice was to sample the envelope at the required rate. In our experiments, we found that
integrating an over sampled envelope was better than the down-sampled envelope. This is mainly due to
the smoothing involved in integration.
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short-term windows (25 ms windows with a shift of 10 ms).

The intuition behind the integration is the following. The conventional feature

extraction methods obtain short-term spectral features by integrating the estimate of power

spectrum of the signal in sub-bands (example PLP [2]). Similar to the representation of

energy in the spectral domain using the power spectrum, the distribution of energy in the

time domain is expressed in the form of Hilbert envelope. Since integration of signal energy

is identical in time and frequency domain (by Parseval’s theorem), the Hilbert envelope can

equivalently be utilized for obtaining the short term energy representation.

The integrated sub-band energies are converted to cepstral features by the ap-

plication of logarithm and DCT across the spectral bands in each short-term frame. The

cepstral transformation is similar to those used in conventional features like MFCC [1]. We

extract 13 cepstral coefficients along with their delta and acceleration components to obtain

39 dimensional features.

We can compare the robustness obtained using the FDLP-S features and the

MFCC features.

4.3.1 Comparison of FDLP-S and MFCC Features

We compare the features extracted from clean, telephone and reverberant conditions3. The

comparison of the FDLP-S features and MFCC features is shown in Fig. 4.7, where we

plot the zeroth cepstral coefficient (C0) for MFCC features and FDLP features. In these

plots, MFCC features are processed with CMS and the FDLP features are derived from

3We use the clean speech signal and telephone speech signal from test set of TIMIT database and
HTIMIT database respectively. For reverberant speech file, we convolve the speech signal with a artificial
room-response obtained from ICSI meeting recording room
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Figure 4.7: Comparison of CMS for MFCC and gain normalization for FDLP.

gain normalized sub-band envelopes.

Cepstral mean subtraction (CMS) tries to suppress the effect of short-term convo-

lutions in speech (like telephone channel distortions) by subtracting the mean of the cepstral

features (Sec. 3.3.1). Generally, the mean is computed over a sliding window (of more than

1s) or over the entire recording. However, if the convolutive effect is spread over long regions

of the speech signal (more than frame duration) such as with room reverberation, CMS is

unable to suppress the artifacts. For these distortions, the gain normalization technique

used for FDLP features is more effective as most of the reverberant effect is contained in

the long-analysis window.

As seen in Fig. 4.7, the FDLP features provide more invariance to telephone dis-

tortions as well as reverberant artifacts compared to MFCC features. In the next section,
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we show the application of these features for speech recognition.

4.4 Speech Recognition Experiments

In this section, we describe the speech recognition experiments using the FDLP-S features

and compare it with various other baseline features. These results are reported in [43].

We apply the proposed features and techniques in a connected word recognition

task with a modified version of the Aurora speech database using the Aurora evaluation

system [44]. We use the “complex” version of the back end proposed in [45]. The training

dataset contains 8400 clean speech utterances, consisting of 4200 male and 4200 female

utterances downsampled to 8 kHz and the test set consist of 3003 utterances [41]. For

reverberant speech recognition experiments, we optimize the set-of parameters like the

bandwidth of the sub-band, shape of the sub-band DCT window and the FDLP model order

using artificial reverberant data. The optimal set of parameters are used in experiments

with naturally far-field data.

For artificial reverberation, the test data was convolved with a set of 6 different

room responses collected from various sources4 with spectral coloration5 (defined as the

ratio of the geometric mean to the arithmetic mean of the spectral magnitudes) ranging

from -2.42 dB to 1.0 dB and the reverberation time ranging from 200ms to 800 ms. The use

of 6 different room responses results in 6 test sets consisting of 3003 utterances each. One

of these test sets (obtained using the impulse response with a spectral coloration of −1.92

4The various room impulse responses are obtained from The ICSI Meeting Recorder Project,
http://www.icsi.berkeley.edu/Speech/mr http://www.icsi.berkeley.edu/speech/papers/asru01-meansub-
corr.html and the ISCA Speech Corpora, http://www.isca-students.org/corpora.

5The reverberation time T60 was not available for all impulse responses. Thus, we use the spectral
coloration.
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Features Clean Speech Revb. Speech

PLP 99.7 80.1

FDLP-MEL-Gauss-Without-Norm. 99.7 78.7

FDLP-MEL-Gauss-Gain-Norm. 99.5 85.3

FDLP-MEL-Rect-Gain-Norm. 99.4 89.1

FDLP-UNF-Rect-Gain-Norm. 99.2 89.5

Table 4.1: Word Accuracies (%) for clean and reverberant speech with various FDLP feature
configurations.)

dB) is used to investigate the effect of varying the number of frequency sub-bands.

In the following sub-sections we analyze the effect of various parameters in the

FDLP model on the output word recognition rate.

4.4.1 Effect of Gain Normalization

The first set of experiments compare the performance of FDLP based features with the

conventional features for clean input conditions. Here, we also investigate the effect of gain

normalization of the FDLP envelopes on the final recognition rate for clean and reverberant

speech.

Table 4.4.1 shows the word accuracies for baseline PLP features (PLP) and FDLP

features extracted using a Gaussian shaped mel-filter bank without and with the gain nor-

malization on the temporal envelopes (FDLP-MEL-Gauss-Without-Norm., FDLP-MEL-

Gauss-Gain-Norm. respectively) and using a rectangular shaped mel spaced filter bank

with gain normalization (FDLP-MEL-Rect-Gain-Norm). We also experiment with uni-
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formly spaced DCT windows (FDLP-UNF-Rect-Gain-Norm). Although the uniform win-

dows cause a slight drop in performance for clean conditions, they provide a framework for

increasing the spectral resolution of reverberant speech in further experiments.

These results show that FDLP-MEL-Gauss-Without-Norm features perform simi-

lar to PLP features for clean speech and the gain normalized FDLP-MEL-Gauss-Gain-Norm

features provide significant improvement for the reverberant speech. Further, the improve-

ment obtained for FDLP-MEL-Rect-Gain-Norm over the FDLP-MEL-Gauss-Gain-Norm is

due to the application of the rectangular windows. As shown in Sec. 2.6, the rectangular win-

dow causes temporal smearing of the FDLP envelopes. Thus, the resulting envelopes from

clean conditions have reduced pole-sharpness. Since the envelopes obtained in reverber-

ant conditions are also smeared due to the properties of the room-response, the rectangular

window based FDLP envelopes create a greater match with their reverberant counter-parts.

This results in an improved performance in reverberant conditions for FDLP-MEL-Rect-

Gain-Norm features.

In all further experiments, we employ the gain normalized temporal envelopes

along with rectangular windows in the DCT domain.

4.4.2 Effect of Number of Sub-bands

In order to study the effect of finer spectral resolution for the proposed compensation

technique, we increase the number of frequency sub-bands from 24 to 120 (which also

results in a reduced sub-band bandwidth). This is accomplished by increasing the duration

of the temporal analysis (from 1000 ms to 2400 ms) for a constant width and overlap of

the DCT windows. The test data consist of the reverberant speech using the same impulse
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Figure 4.8: Recognition accuracy as function of the number of sub-bands.

response as before. Fig. 4.8 shows the recognition accuracies for the FDLP features when

the number of sub-bands is varied. As shown here, the best performance in reverberant

conditions is obtained using 96 linear sub-bands.

For a fixed number of sub-bands, the bandwidth of the sub-bands can be varied keeping

the band-overlap constant [46]. This would help us study the effect of band-width. The

narrow sub-band decomposition means that the modulation extent of the corresponding

modulation spectrum reduces (given by half of bandwidth of the sub-band). As seen in

Fig. 4.9, when the bandwidth reduces, the robustness in reverberant environment improves

significantly while the performance in clean conditions degrades moderately.

From these experiments, we find that increasing the frequency resolution strength-

ens the validity of the assumptions made for the gain normalization technique (Sec. 3.5)
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Figure 4.9: Word recognition accuracy as function of the bandwidth of the sub-band for
clean and two types of reverberant data.

and hence, significantly improves the recognition accuracies in reverberant conditions. In

the rest of the experiments, we use a 96 band decomposition with a bandwidth of 100 Hz.

4.4.3 Effect of FDLP Model Order

In these experiments, we investigate the effect of FDLP model order on the performance in

reverberant conditions [46]. When speech is corrupted by room reverberation, the sub-band

envelopes are smeared in time. The degree of smearing is determined by the reverberation

time (T60). In this case, higher order FDLP results in the estimation of large number of

signal peaks which are well represented in reverberant conditions. On the other hand, a

73



CHAPTER 4. SHORT-TERM FEATURES FOR SPEECH AND SPEAKER
RECOGNITION

0 20 40 60 80 100
40

50

60

70

80

90

100

Model Order

A
cc

ur
ac

y

 

 

Clean

Revb. 300ms

Revb. 700ms

Figure 4.10: Word recognition accuracy as function of the model order for clean and two
types of reverberant data. The best performance in each condition is highlighted using the
star sign.

lower model order fails to capture enough information needed for good ASR performance

in clean conditions (or when there is a lower degree of reverberation). This trade-off is

illustrated in Fig. 4.10, where we plot the ASR accuracy for clean conditions and on two

types of reverberant data (which has reverberation time of 300 and 700 ms) as a function of

the FDLP model order. The best performance in each condition is also highlighted. It can

be seen that a lower model order is good when there is significant amount of reverberation,

while a higher model order is preferred for clean conditions. The curve for 700 ms provides

a sharp optimal model order. This optimal model order is related to the match between

the average modulation spectrum [46] obtained for this model order and the corresponding
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Figure 4.11: Word recognition accuracy as function of the expansion factor for clean and
two types of reverberant data.

room-impulse response function.

Since there is a trade-off involved in the choice of the model-order, we use a model-

order 30 poles per sub-band per-second as it gives reasonable performance in clean and noisy

conditions.

4.4.4 Envelope Expansion

In the past, it has been shown that the time domain linear prediction can be mod-

ified to estimate a transformed spectral envelope instead of the original spectrum [47]. The

auto-correlations derived from the modified power spectrum are used for linear prediction.
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In FDLP framework, spectral auto-correlations can be derived from transformed Hilbert

envelopes [46], where the transformation here corresponds to raising the original Hilbert

envelope to a power r. When the Hilbert envelope is compressed (r < 1), the resulting

model tends to approximate the valleys of the envelope better [47]. However, expansion of

the envelopes (r > 1) results in enhanced modeling of the peaks of the envelope.

We apply the transform linear prediction in FDLP and derive features for ASR.

When speech is corrupted by room reverberation, the high energy peaks (where the signal

to reverberant component ratio is high) can be more robustly estimated as compared to the

valleys of the envelope. Thus, FDLP features derived using expanded envelopes (r > 1) are

more robust in reverberant environments. This is illustrated in Fig. 4.11, where we plot the

ASR accuracy for clean conditions as well as the two reverberant conditions as function of

the the expansion factor r.

In these experiments, the envelope expansion provides significant improvements in

reverberant conditions. This also illustrates the advantage of all-pole modeling using FDLP.

Since the AR model estimates the peaks with high accuracy, these estimates are relatively

well preserved in noisy conditions.

The envelope expansion moderately reduces the performance in clean conditions.

In the remaining experiments, we do not use envelope expansion.

4.4.5 Results on Artificial Reverberation

In Fig. 4.12, the results for the proposed FDLP-S technique are compared with those ob-

tained for several other robust feature extraction techniques proposed for reverberant ASR

namely CMS [39] (Sec. 3.3.1), LTLSS [41] (Sec. 3.3.3) and LDMN [40] (Sec. 3.3.2). This is
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Figure 4.12: Comparison of word recognition accuracies (%) using different techniques using
6 artificial room responses.

done for the 6 different room impulse responses.

In our LTLSS experiments, we calculated the means independently for each indi-

vidual utterance (which differs from the approach of grouping multiple utterances for the

same speaker described in [41]) using a shorter analysis window of 32 ms, with a shift of

8 ms. For the FDLP features, we fix the number of sub-bands to 96. For the various

room responses, the proposed FDLP-S features, on the average, provide a relative error

improvement of 24% over the other feature extraction techniques considered. The relative

improvements are similar for the different room responses, although the absolute improve-

ments are higher for room impulse responses with higher spectral coloration (Fig. 4.12).
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Channel PLP CMS LDMN LTLSS FDLP

Channel E 68.1 71.2 73.2 74.0 85.2

Channel F 75.5 77.4 80.4 81.0 88.1

Channel 6 74.1 78.3 80.9 81.1 89.6

Channel 7 58.6 67.6 70.5 71.0 84.9

Avg. 71.6 73.6 76.3 76.8 87

Table 4.2: Word Accuracies (%) using different feature extraction techniques on far-field
microphone speech

4.4.6 Results on Natural Far-Field Reverberation

In order to investigate the performance of the proposed feature extraction for naturally

reverberant speech in background noise, we perform experiments on a a set of connected

digits recorded in a meeting room [48]. These experiments are performed on the digits

corpus recorded using far-field microphones as part of the ICSI Meeting task6. The corpus

consists of four sets of 2790 utterances each. Each of these sets correspond to speech recorded

simultaneously using four different far-field microphones. Each of these sets contain 9169

digits similar to those found in TIDIGITS corpus. We use the HMM models trained with

the clean speech from earlier experiments.

Table 4.4.5 shows the word accuracies for the different feature extraction techniques

using the far-field test data, where we obtain a relative error improvement of about 43%

over the other feature extraction techniques.

The experiments on speech recognition task showed that the proposed features

6The ICSI Meeting Recorder Project, http://www.icsi.berkeley.edu/Speech/mr
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provide significant improvements for artificial and natural reverberation. In the next section,

we perform experiments on a speaker verification task.

4.5 Speaker Verification Experiments

In this section, we describe the speaker recognition experiments performed using the FDLP-

S features [49].

4.5.1 Experimental set-up

The input speech features are feature warped [50], which is technique of normalizing the

distribution of the features. The input feature distribution is warped to a Gaussian dis-

tribution with zero-mean and unit variance. The warping of the features improves the

performance in speaker verification [50].

We use a GMM-UBM based speaker verification system [51]. The features are used

to train a 512 component GMM on the development data. Once the UBM is trained, the

mixture component means are maximum-a-posteriori (MAP) adapted and concatenated to

form supervectors [52]. These supervectors characterize the speaker model for the target

speaker.

In order to remove the effect of channel on the speaker models, nuisance attribute

projection (NAP) is applied on the supervectors. The NAP technique attempts to remove

directions which correspond to large intra speaker variability (like session variability) which

are caused by channel variations [53]. In the NAP method, the high-variance principal

components correspond to the channel (nuisance) space and low-variance components cor-
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Cond. Task

1. Interview speech in training and test.

2. Interview speech from the same microphone type in training and test.

3. Interview speech from different microphones types in training and test.

4. Interview training speech and telephone test speech.

5. Telephone training speech and non-interview microphone test speech.

6. Telephone speech in training and test from multiple languages.

7. English telephone speech in training and test.

8. English telephone speech spoken by a native speaker in training and test.

Table 4.3: Core evaluation conditions for the NIST 2008 SRE task.

respond to the speaker space. In our system, we remove 64 nuisance directions based on

the principal components extracted from the within-class covariance matrix [53].

For the task of verification, scores are computed as

s = ΦT
e KΦv (4.1)

where Φe, Φv are the supervectors corresponding to enrollment and verification recordings

respectively, K is the NAP projection matrix and s is the score for this pair of conversation

sides. These scores are further normalized using the ZT score normalization procedure [54].

The proposed features are evaluated on the core conditions of the NIST 2008

speaker recognition evaluation7 (SRE). The description of the 8 core evaluation conditions

7“National Institute of Standards and Technology (NIST),” speech group website,
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Feat. C1 C2 C3 C4 C5 C6 C7 C8

MFCC 29 (5.3) 3 (0.8) 30 (5.4) 36 (7.8) 32 (7.9) 41 (7.6) 16 (3.3) 15 (3.5)

F-M-1s 28 (5.2) 3 (0.7) 29 (5.3) 36 (8.8) 29 (7.6) 44 (8.1) 14 (3.1) 15 (3.4)

F-M-10s 24 (4.8) 2 (0.8) 25 (4.9) 33 (7.5) 26 (6.2) 42 (7.7) 13 (3.0) 13 (3.5)

F-96-10s 20 (3.6) 2 (0.3) 21 (3.7) 27 (6.4) 24 (6.8) 46 (8.2) 15 (3.4) 14 (3.2)

Table 4.4: Performance of various features in terms of min DCF (×103) and EER (%) in
parentheses.

is given in Table. 4.3. The first 3 conditions essentially use far-field reverberant data in

training and test and the last 3 conditions use the telephone data. Conditions 4 and

5 represent the cross-channel trials where the training and test data are recorded from

different environments.

The development data set consists of a combination of audio from the NIST 2004

speaker recognition database, the Switchboard II Phase III corpora, the NIST 2006 speaker

recognition database, and the NIST08 interview development set. The collection contains

13770 recordings. There are 1769 speakers in the development data: 988 female speakers

and 781 male speakers. The development set was used to estimate the UBM parameters,

the expected within-class covariance matrix over all speakers for NAP compensation, as well

as for gender-dependent ZT score normalization. The development data includes far-field

microphone and telephone channel data.

http://www.nist.gov/speech, 2008.
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4.5.2 Speaker Recognition Results

The baseline features are 39 dimensional MFCC features [1] containing 13 cepstral

coefficients, their delta and acceleration components. These features are computed with a

frame shift of 10ms. We use 37 Mel-filters for the baseline features.

The FDLP features are used in 3 configurations. All configurations use the gain

normalization technique on the FDLP envelopes. F-M-1s corresponds to features derived

from temporal envelopes directly on the mel-bands (37 mel bands instead of 96 linear bands).

These features use a temporal analysis window of 1s on the input speech (and hence, a 1s

window for the gain normalization as well). F-M-10s also uses mel-band temporal envelopes

obtained from an input analysis window of 10s. F-96-10s features use a 10s analysis window

and derive temporal envelopes in 96 linear sub-bands. Gain normalization is applied on the

sub-band envelopes of all these features.

The speaker verification results for the various feature extraction techniques are

reported in Table 4.4. F-M-1s features provide performances similar to the baseline MFCC

features. When the analysis window is increased to 10s, there is a relative performance

improvement of about 15% on almost all the conditions. Furthermore, applying an initial

sub-band analysis of 96 bands provides significant improvements for the interview mic con-

ditions (relatively about 20-30% over the baseline system). This is due to the application of

gain normalization on longer analysis windows in narrow sub-bands which validates the first

order approximation made in the technique (Sec. 3.5). A drop in performance is observed

for Cond. 6 which may be attributed to the use of different languages in training and test

conditions (where the use of longer context degrades the performance).
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4.6 Chapter Summary

In this Chapter, we have developed the short-term features from FDLP spectro-

gram for speech recognition and speaker verification. We begin with the two-dimensional

spectrographic representation using sub-band FDLP envelopes (Sec. 4.2). Then, we de-

scribe the FDLP-S feature extraction scheme in Sec. 4.3. The application of these features

for recognition experiments is reported in Sec. 4.4 and Sec. 4.5.

Recognition experiments gave the following conclusions -

1. Gain normalization results in improvements in recognition performance in reverberant

conditions without severely degrading the performance in matched conditions.

2. The assumption used in gain normalization are validated by the use of long-term

analysis in narrow bands.

3. A trade-off appears in the model order selection for representation of clean and rever-

berant speech.

4. Speech recognition experiments show the improvements in mis-match train/test condi-

tions where as the speaker recognition experiments are done with matched conditions.

The FDLP-S features provide significant improvements in both conditions compared

to baseline features.

Although the FDLP-S features are easily applicable to conventional systems (like

HMM-GMM), the integration in time-domain using short-term segments inherently reduces

the temporal resolution. In fact, the temporal resolution of the FDLP-S features are similar
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to the conventional STFT based approaches. Therefore, there is need to derive alternate

representation which can utilize the higher resolution present in the FDLP envelopes.

In the next chapter, we introduce the modulation feature extraction using FDLP

representation (FDLP-M features) which are derived from syllable length segments without

any integration. The modulation representation makes use of the higher temporal resolution

in FDLP. These are used for phoneme recognition in noisy environments.
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Modulation Features Using FDLP

5.1 Chapter Outline

In this chapter, we develop the modulation feature extraction scheme. These

features are extracted from syllable-length segments of the sub-band FDLP envelopes.

These features can make use of the higher temporal resolution found in the FDLP analysis

(Sec. 4.2). The sub-band FDLP envelopes are compressed using static and dynamic com-

pression. These are converted to modulation spectral components and used as features for

phoneme recognition task.

The remainder of the chapter is organized as follows. In Sec. 5.2, we describe the

modulation feature extraction using FDLP spectrogram. The application of these features

for phoneme recognition task in clean conditions is reported in Sec. 5.3. The noise com-

pensation procedure which attempts to derive robust envelopes in additive noise conditions

is developed in Sec. 5.4. Phoneme recognition experiments in noisy speech is detailed in

Sec. 5.5. The analysis of the relative contribution from various stages in the modulation
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Figure 5.1: Block schematic for the FDLP based modulation feature extraction using static
and dynamic compression.

feature extraction is shown in Sec. 5.6. The chapter ends with a summary of the results in

Sec. 5.7.

5.2 Modulation Feature Extraction

In this section, we describe the modulation feature extraction using FDLP spectrogram.

This is reported in [55].

The block schematic for the modulation feature extraction (FDLP-M) technique

is shown in Fig. 5.1. Long segments of speech signal are analyzed in critical bands using

the technique of FDLP. FDLP forms an efficient method for obtaining smoothed, minimum

phase, parametric models of temporal envelopes (Chap. 2). The entire set of sub-band

temporal envelopes, which are obtained by the application of FDLP on individual sub-band

signals, forms a two dimensional (time-frequency) representation of the input signal energy

(Sec. 4.2).

The sub-band temporal envelopes are then compressed using a static compression

scheme which is a logarithmic function and a dynamic compression scheme [56]. The use of

the logarithm is to model the overall nonlinear compression in the auditory system which

covers the huge dynamical range between the hearing threshold and the uncomfortable
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Figure 5.2: Dynamic compression of the sub-band FDLP envelopes using adaptive com-
pression loops.

loudness level.

The dynamic compression, shown in Fig. 5.2, is realized by an adaptation circuit consisting

of five consecutive nonlinear adaptation loops [57]. Each of these loops consists of a divider

and a low-pass filter with time constants ranging from 5 ms to 500 ms. The input signal

is divided by the output signal of the low-pass filter in each adaptation loop. Sudden

transitions in the sub-band envelope that are very fast compared to the time constants of

the adaptation loops are amplified linearly at the output due to the slow changes in the low

pass filter output, whereas the slowly changing regions of the input signal are compressed.

The dynamic compression stage is followed by a low pass filter with a cutoff frequency of 8

Hz [57].

The static and dynamic compression schemes are illustrated in Fig. 5.3. This figure shows

(a) a portion of 1000 ms of full-band speech signal, (b) Hilbert envelope, (c) FDLP envelope,

which is an all-pole approximation of (b), (d) logarithmic compression of the FDLP envelope

and (e) adaptive compression of the FDLP envelope. As seen in this figure, the static

compression reduces the dynamic range of the input whereas the dynamic compression
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Figure 5.3: Static and dynamic compression of the temporal envelopes: (a) a portion of
1000 ms of full-band speech signal, (b) the temporal envelope extracted using the Hilbert
transform, (c) the FDLP envelope, which is an all-pole approximation to (b) estimated using
FDLP, (d) logarithmic compression of the FDLP envelope and (e) adaptive compression of
the FDLP envelope.

enhances the onsets and offsets of the envelope while suppressing the constant regions. In

our experiments, we use the envelopes with a sampling rate of 400 Hz1. This sampling rate

is kept high enough so as to provide high resolution envelopes for the non-linear compression

stages.

Conventional speech recognition systems typically use speech features sampled at

100 Hz (i.e one feature vector every 10 ms). For using the modulation representation in a

1Sub-sampling the envelopes before non-linear processing reduces the computation complexity in the
feature extraction. In phoneme recognition experiments, we found that the envelopes can be sub-sampled
by a factor of 16 from the full sampling rate without drop in performance.
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conventional system, the compressed temporal envelopes are divided into 200 ms segments

with a shift of 10 ms. Discrete Cosine Transform (DCT) of both the static and the dynamic

segments of temporal envelope yields the static and the dynamic modulation spectrum

respectively. We use 14 modulation frequency components from each cosine transform,

yielding modulation spectrum in the 0 − 35 Hz region with a resolution of 2.5 Hz. This

choice of a parameters is a result of series of phoneme recognition experiments reported in

Sec. 5.3.

In the next section, we describe the phoneme recognition experiments using these

features.

5.3 Phoneme Recognition Setup

5.3.1 MLP Based Phoneme Recognition

The phoneme recognition system is based on the Hidden Markov Model - Artificial Neural

Network (HMM-ANN) paradigm [58]. The multi-layer perceptron (MLP) estimates the

posterior probability of phonemes given the acoustic evidence P (qt = i|xt), where qt denotes

the phoneme index at frame t, xt denotes the feature vector. The relation between the

posterior probability P (qt = i|xt) and the likelihood P (xt|qt = i) is given by the Bayes rule,

p(xt|qt = i)

p(xt)
=
P (qt = i|xt)
P (qt = i)

. (5.1)

It is shown in [58] that the neural network with sufficient capacity and trained on

enough data estimates the true Bayesian a-posteriori probability. The scaled likelihood in

an HMM state is given by Eq. 5.1, where we assume equal prior probability P (qt = i) for
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each phoneme i = 1, 2...39. The state transition matrix is fixed with equal probabilities

for self and next state transitions. Viterbi algorithm is applied to decode the phoneme

sequence.

A three layered MLP is used to estimate the phoneme posterior probabilities. The

network is trained using the standard back propagation algorithm with cross entropy error

criteria. The learning rate and stopping criterion are controlled by the frame classification

rate on the cross validation data.

The performance of phoneme recognition is measured in terms of phoneme accu-

racy. In the decoding step, all phonemes are considered equally probable (i.e., there is no

language model deployed). The optimal phoneme insertion penalty that gives maximum

phoneme accuracy on the cross-validation data (which is a sub-set of the database excluding

the train and the test set) is used for the test data. The partition of the database into train,

test and cross validation data is described below.

5.3.2 TIMIT database

Experiments are performed on TIMIT database. In the TIMIT database, there are two ‘sa’

dialect sentences spoken by all speakers in the corpus. The use of these ‘sa’ sentences in

training leads to the learning of certain phoneme contexts. This may result in artificially

high recognition scores [59] and bias the context independent phoneme recognition experi-

ments. In order to avoid any such unfair bias for certain phonemes in certain contexts, we

remove the ‘sa’ dialect sentences from the training and test data [59]. The remaining train-

ing data consists of 3000 utterances from 375 speakers, cross-validation data set consists

of 696 utterances from 87 speakers and the test data set consists of 1344 utterances from
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168 speakers. The TIMIT database, which is hand-labeled using 61 labels is mapped to the

standard set of 39 phonemes [60]. We do not apply any speaker based normalization on the

input features.

In the TIMIT phoneme recognition system, the MLP consists of 1000 hidden

neurons, and 39 output neurons (with soft max non-linearity) representing the phoneme

classes.

5.3.3 CTS database

The conversation telephone speech (CTS) database consists of 300 hours of conver-

sational speech recorded over a telephone channel at 8 kHz [61]. The training data consists

of 250 hours of speech from 4538 speakers, cross-validation data set consists of 40 hours of

speech from 726 speakers and the test data set consists of 10 hours from 182 speakers. It

is labeled using 45 phonemes. The phoneme labels are obtained by force aligning the word

transcriptions to the previously trained HMM-GMM models [61].

Here, the MLP consists of 8270 hidden neurons, and 45 output neurons (with soft

max non-linearity) representing the phoneme classes.

5.3.4 Phoneme Recognition Results

In this section, we compare the phoneme recognition performance of FDLP-M

features with other modulation features and baseline PLP features. These results were first

reported in [62].

The baseline system for these experiments uses the conventional Perceptual Linear

Prediction (PLP) features [2] with a context of 9 frames [60] (351 dimensional features
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PLP-9 Fepstrum MSG MRASTA FDLP-M

66.8 61.1 62.4 64.5 69.3

Table 5.1: Phoneme Recognition Accuracies (%) for PLP features and various modulation
features on TIMIT database.

denoted as PLP-9). In the past, some of the modulation feature techniques have been

used as additional sources of information by combining the modulation spectrum with

conventional short-term PLP or MFCC features (for example Fepstrum [63], MSG [23]).

However, in our experiments we report the recognition performance of the modulation

features independently without any combination. This is done in order to illustrate the use

of modulation spectrum as alternate representation compared to the conventional short-

term spectral features.

In our implementation, Fepstrum features consist of 5 modulation frequency com-

ponents in the 0 − 25 Hz range from 40 mel bands yielding 200 dimensional vector for

each frame. These features are dimensionality reduced to 60 dimensional features [63]. A

context of 9 frames gives a 540 dimensional feature vector at the input of the phoneme

recognition system. MSG features consist of 9 modulation components from 36 sub-bands

resulting in 324 dimensional features for every speech frame [23]. MRASTA features use 19

critical bands with 14 modulation filters. These are appended with frequency derivatives

yielding 504 dimensional features [22]. For the FDLP based modulation features, 21 critical

bands are used with 14 static modulation spectral components and 14 dynamic modulation

spectral components. This gives 588 dimensional features2 at the input vector.

2The number of modulation components derived is a parameter obtained by optimization using phoneme
recognition experiments reported in next section.
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Table 5.1 summarizes the results for the phoneme recognition experiments with

various modulation features. Among the past modulation approaches, MRASTA features

provide the best phoneme recognition performance. FDLP based features using static and

dynamic modulation spectrum provides a relative improvement of 7.5 % compared to the

baseline PLP features.

5.3.5 Effect of Various Parameters

The previous section showed that the proposed feature extraction provides promis-

ing results on TIMIT database. In-order to analyze the relative contribution of various

stages of the proposed feature extraction, we perform a set of phoneme recognition experi-

ments with different modifications to the proposed features. These modifications are:

Choice of AM demodulation

The proposed features use FDLP technique for AM demodulation of sub-band signals. As

mentioned in Sec. 1.2.1, other methods of AM demodulation have been used in the past.

We compare the phoneme recognition performance of FDLP approach with the half-wave

rectification technique [23] and the sub-band energy trajectory approach [22]. All the other

processing stages in the proposed features (like the sub-band decomposition, static and

dynamic modulation spectrum etc) are retained. These results are shown in Table 5.2. In

these experiments, FDLP based AM demodulation provides the best phoneme recognition.
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AM Demodulation

Half-Wave Energy FDLP

67.0 67.7 69.3

Temporal Context (ms)

100 200 300 400

68.7 69.3 68.0 66.2

Modulation Extent (Hz)

15 25 35 45

67.1 69.1 69.3 69.1

Type of Modulation

Stat. Dyn. Stat. + Dyn.

67.9 64.6 69.3

Table 5.2: Phoneme Recognition Accuracies (%) for various modifications of the proposed
feature extraction technique.

Duration of Temporal Context

The temporal analysis window for the extraction of static and dynamic modulations is

modified in these experiments from 100 to 400 ms. This duration represents the contextual

information used in deriving modulation components3. FDLP based sub-band processing

is used and static and dynamic modulation features are derived. These results are shown

3This is different from the FDLP envelope computation window which is typically of the order of few
seconds. We window the FDLP envelope into segments with varying lengths (100-400 ms with a shift of
10 ms). Within each segment, a temporal DCT is applied to obtain 14 static and 14 dynamic modulation
components.
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in the second row of Table 5.2. It is interesting to note that the best phoneme recognition

performance is obtained for a context of 200 ms, which also corresponds to the average

syllabic rate of human speech.

Extent of Modulation Information

In these experiments, the extent of modulation spectrum used for feature extraction is varied

from 15-45 Hz. The duration of modulation analysis on the FDLP envelopes is fixed at 200

ms and the number of DCT coefficients is varied. Static and dynamic modulations are used

for phoneme recognition. These results, reported in the third row of Table 5.2, show that

the phoneme recognition performance peaks for a modulation content in the range 0-35 Hz

(14 DCT components from static and dynamic compression streams).

Type of Modulation Spectrum

As mentioned before, we derive modulation information from two types of envelope com-

pression scheme. Static modulations are derived using a logarithmic compression and the

dynamic modulations are derived using adaptive loops. FDLP envelope with a temporal

context of 200 ms is used for deriving the modulations in the range of 0-35 Hz. These

results are shown at the bottom of Table 5.2. The static modulation features provide good

phoneme recognition for fricatives and nasals (which is due to modeling property of the

signal peaks in static compression) whereas the dynamic modulation features provide good

performance for plosives and affricates (where the fine temporal fluctuations like onsets and

offsets carry the important phoneme classification information) [55]. Hence, the concate-

nating the feature streams results in considerable improvement in performance for most of
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PLP RASTA MRASTA ETSI FDLP-M

52.3 52.8 52.2 54.0 56.6

Table 5.3: Phoneme Recognition Accuracies (%) for different feature extraction techniques
on CTS database.

the phoneme classes.

From all these experiments, it is found that the feature extraction technique which

uses static and dynamic modulation spectrum in 0-35 Hz range obtained from 200 ms of

FDLP envelopes provides the best phoneme recognition performance.

5.3.6 Phoneme Recognition in CTS

For phoneme recognition in 8 kHz sampled CTS database, we use FDLP-M features ex-

tracted from 15 bark-bands and each sub-band has 14 static modulation and 14 dynamic

modulation components in 0-35 Hz range. This results in 420 dimensional features.

Table 5.3.5 reports the results for the phoneme recognition experiments on CTS

database. We compare the proposed FDLP features with other features like PLP (with 9

frame context) and noise robust features like RASTA [16] (with 9 frame context), MRASTA

and Advanced-ETSI (noise-robust) distributed speech recognition front-end [64] with 9

frame context. In these experiments, we obtain a relative improvement of 6 % compared to

the ETSI feature extraction technique.

Although we obtain reasonable performance improvements in matched conditions

(in clean and telephone speech), the more challenging issue is the development of robust

feature extraction techniques which perform well in mis-matched conditions. In the next
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Figure 5.4: Block schematic for noise compensation in FDLP.

section, we develop the noise compensation technique which attempts to improve the ro-

bustness of the proposed FDLP feature extraction using minimum mean square envelope

estimation.

5.4 Noise Compensation in FDLP

The block schematic for the noise compensation in FDLP envelopes is shown in

Fig. 5.4. As before, long segments of the speech signal are decomposed into bark-spaced sub-

bands by windowing the discrete cosine transform (DCT). The inverse discrete Fourier trans-

form (IDFT) of the zero-padded DCT signal gives the sub-band analytic signal (Sec. 2.5).

The minimum mean square error (MMSE) technique is applied on the sub-band analytic

signal to estimate the clean Hilbert envelope from the noisy envelope. This approach is

similar to the MMSE based spectral amplitude estimator [65].

In the next section, we give the mathematical details of MMSE envelope estimation

procedure.
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5.4.1 MMSE Hilbert envelope estimation

When speech signal is corrupted by uncorrelated additive noise, the signal that

reaches the microphone can be written as

x[m] = s[m] + n[m], (5.2)

where x[m] is the discrete representation of the input signal, s[m] represents the clean speech

signal which is corrupted by noise n[m].

By virtue of the orthogonality property of the DCT matrix, the speech and noise

signals continue to be additive and uncorrelated in the DCT domain. Further, the applica-

tion of IDFT on the zero padded DCT signal (Sec. 2.5) gives

AX(m, i) = AS(m, i) +AN (m, i), (5.3)

where AX(m, i), AS(m, i) and AN (m, i) are the discrete-time analytic signal representations

of the noisy speech, clean speech and noise respectively for the sub-band i. The MMSE

estimator [65] can be used for the estimation of the magnitude of the analytic signal (similar

to the spectral amplitude estimator).

Then, the plug-in estimate for the squared magnitude of the analytic signal (Hilbert

envelope) can be written as,

ÊS(m, i) = G2(m, i)× EX(m, i), (5.4)

where ES , EX denote the squared magnitude (Hilbert envelope) of AX , AS respectively

and G(m, i) denotes noise suppression rule.

For obtaining the noise suppression, we use the decision directed approach [65] to
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Figure 5.5: Gain normalized sub-band FDLP envelopes for clean and noisy speech signal
(babble 10 dB) (a) without and (b) with MMSE noise suppression.

obtain G(m, i) as

G(m, i) =
ζ(m, i)

1 + ζ(m, i)
(5.5)

ζ(m, i) = α
ÊS(m− δ, i))

ÊN

+ (1− α)
(

γ(m, i)− 1
)

(5.6)

γ(m, i) =
EX(m, i)

ÊN

(5.7)

where ÊN denotes the noise floor obtained as mean sub-band envelope in noisy segments

(identified by using short-term energy estimates [64]), δ is the hangover constant, ζ(m, i)

and γ(m, i) denote the a-priori and aposteriori SNR in the sub-band envelope. In our case,

we set α as 0.9 and δ as 25 ms.

The noise suppressed sub-Hilbert envelope is transformed using DFT into spectral auto-

correlations of the sub-band DCT sequence, which are used for linear prediction(using

Eq. 2.33 and Prop. 2). The order of the linear prediction corresponds to 40 poles per
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second per sub-band4. The FDLP is implemented using gain normalization (Chap. 3).

An illustration of the use of the MMSE noise suppression rule on sub-band FDLP

envelopes is shown in Fig. 5.5, where we plot the envelopes from clean speech and noisy

speech (babble noise at 10 dB SNR) of a sub-band (500-700Hz) with and without the MMSE

noise suppression rule. When MMSE noise suppression is applied, the match between sub-

band envelopes extracted from clean and noisy speech is improved.

The sub-band FDLP envelopes, processed with MMSE estimation rule, are con-

verted to modulation features using various stages described in Sec. 5.2. In the next section,

we report the phoneme recognition performance of the proposed features on mis-matched

noisy and reverberant speech.

5.5 Phoneme Recognition In Mis-matched Noisy Conditions

In this section, we show the usefulness of the gain normalization and noise com-

pensation technique in dealing with adverse acoustic environments involving additive and

convolutive artifacts. The following results and analysis were first reported in [66].

5.5.1 Noisy TIMIT database

In all these experiments, we train the MLPs on clean TIMIT training speech

downsampled to 8 kHz. The robustness of the proposed features is evaluated using three

versions of the test data corresponding to distortions introduced by additive noise, convo-

lutive noise and telephone channel. In case of additive noise conditions, a noisy version

4This is more than model order used in Chap. 4 for reverberant speech recognition using narrow-bands.
In the present case, we use a critical-band decomposition which is a wide-band analysis, therefore allowing
the use of higher model order
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of the test data is created by adding various types of noise at different SNRs (similar to

Aurora 2 database [44]). The noise types chosen are the ”Restaurant”, ”Babble”, ”Subway”

and ”Exhibition Hall” obtained from [67]. These noises are added at signal-to-noise ratios

(SNR) 0, 5, 10, 15 and 20 dB using the FaNT tool5. The generation of the noisy version of

the test data is done using the set-up described in [41]. Thus, there are 4 real noise types

and 5 SNR yielding 20 versions of the test data each with 1344 utterances.

For phoneme recognition experiments with reverberant speech, the clean TIMIT

test data is convolved with a set of 9 different room responses collected from various sources6

with spectral coloration (defined as the ratio of the geometric mean to the arithmetic mean

of the spectral magnitudes) ranging from -2.42 dB to -0.57 dB and reverberation time (T60)

ranging from 100 to 500 ms. The use of 9 different room responses results in 9 reverberant

test sets consisting of 1344 utterances each. For phoneme recognition experiments in tele-

phone channel, speech data collected from 9 telephone sets in the HTIMIT database [68] is

used. For each of these telephone channels, 842 test utterances, also having clean recordings

in the TIMIT test set, are used.

In all the experiments, the system is trained only on the training set of TIMIT

database, representing clean speech without the distortions introduced by the additive or

convolutive noise but tested on the clean TIMIT test set as well as the noisy versions of the

test set in additive, reverberant and telephone channel conditions (mismatched train and

test conditions).

5“FaNT: Filtering and Noise Adding Tool”, http://dnt.kr.hsnr.de/download.html
6The various room impulse responses are obtained from The ICSI Meeting Recorder Project,

http://www.icsi.berkeley.edu/Speech/mr http://www.icsi.berkeley.edu/speech/papers/asru01-meansub-
corr.html and the ISCA Speech Corpora, http://www.isca-students.org/corpora.
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PLP RASTA MRASTA LDMN LTLSS MVA ETSI FDLP-M

Clean Speech

65.4 61.2 62.8 64.8 64.8 61.9 64.0 62.1

Speech with additive noise

28.2 29.4 30.2 36.0 32.5 36.4 41.6 43.9

Reverberant Speech

20.3 22.7 22.1 30.0 29.4 29.4 22.7 33.6

Telephone Speech

34.3 45.4 48.0 50.1 37.3 49.9 47.7 55.5

Table 5.4: Phoneme Recognition Accuracies (%) on clean speech, speech with additive
noise (average of 4 noise types at 0,5,10,15,20 dB SNR), reverberant speech (average of 9
room-response functions) and telephone speech (average of 9 channel conditions).

5.5.2 Results

The baseline experiments use Perceptual Linear Prediction (PLP) features with a

context of 9 frames [60]. The results for the proposed technique are also compared with

those obtained for several other robust feature extraction techniques namely:

• Modulation spectrum based features - RASTA [16] features with 9 frame context and

Multi-resolution RASTA (MRASTA) [22],

• Features proposed for robustness in additive noise - Advanced-ETSI (noise-robust)

distributed speech recognition front-end [64] and Mean-Variance ARMA (MVA) pro-

cessing [69] with 9 frame context (MVA),
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• Robust features for reverberant speech recognition - Long Term Log Spectral Sub-

traction (LTLSS) [41] and Log-DFT Mean Normalization (LDMN) [40] with 9 frame

context.

These techniques are chosen as baseline features as they are commonly deployed

in automatic speech and phoneme recognition systems. For the proposed FDLP based

modulation frequency features, we use 15 critical bands in the 300− 4000 Hz with an equal

band-width (in the bark frequency scale) of approx. 1 bark.

Table 5.4 shows the average phoneme recognition performance for the various

feature extraction techniques on clean speech, speech with additive noise, reverberant speech

and telephone channel speech. In clean conditions the baseline PLP feature extraction

technique provides the best performance. However, the performance of the PLP based

phoneme recognition system degrades significantly in all the mismatched conditions. In the

case of additive noise, the ETSI features give good robustness among the short-term spectral

features. For phoneme recognition in reverberant speech and telephone speech, LDMN and

MVA features provide good performance among the short-term spectral features.

In all the mismatched conditions, the FDLP features provide significant robustness

compared to other feature extraction techniques. On the average, the relative performance

improvement over the other feature extraction techniques is about 4 % for speech in additive

noise, 5 % for reverberant speech, and about 11 % for telephone speech.

The phoneme recognition performance on the individual noise types (“Restau-

rant”, “Babble”, “Subway” and “Exhibition Hall”) and SNR conditions (0-20 dB) is shown

in Table 5.4. Since the RASTA technique was mainly proposed for robustness in convolutive
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SNR (dB) PLP GFCC MRASTA LDMN LTLSS MVA ETSI FDLP-M

Restaurant Noise

0 13.2 12.5 7.8 19.8 14.4 18.8 23.2 23.0

5 18.1 24.2 17.4 25.8 21.1 26.2 31.2 32.0

10 25.7 36.6 28.5 33.6 30.1 35.0 40.5 43.4

15 35.1 46.0 39.1 41.9 40.8 43.6 48.3 52.0

20 45.4 51.9 47.6 49.2 51.9 50.4 54.3 58.1

Babble Noise

0 12.2 10.5 6.0 18.8 13.9 16.1 20.8 22.4

5 16.3 21.9 15.2 24.2 19.6 25.1 29.5 31.3

10 23.4 34.7 26.5 31.8 28.2 34.4 39.0 43.2

15 32.7 45.6 37.6 40.8 39.2 43.1 47.9 53.0

20 43.8 52.2 47.5 49.2 51.3 50.3 54.6 58.7

Subway Noise

0 16.6 18.2 19.9 28.1 20.3 27.5 32.6 34.5

5 23.0 31.3 30.3 35.3 27.4 35.4 41.3 42.6

10 31.0 42.6 38.4 42.2 35.8 42.5 48.5 50.6

15 39.6 49.5 45.3 48.8 43.7 47.9 54.3 56.2

20 48.3 53.6 50.8 54.7 51.1 52.5 58.6 59.9

Exhibition Hall Noise

0 14.7 9.2 8.6 20.9 17.3 20.5 24.4 25.4

5 19.7 21.1 18.9 27.1 23.2 28.0 33.1 34.7

10 26.6 34.1 29.7 34.5 31.0 36.3 42.0 45.0

15 34.8 45.1 39.9 43.0 40.3 43.9 50.3 53.5

20 44.0 52.0 48.5 50.6 50.3 50.4 55.5 58.7

Table 5.5: Phoneme recognition accuracies (%) for 4 noise types at 0,5,10,15,20 dB SNRs.
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distortions, we replace the RASTA features with the gammatone frequency cepstral coef-

ficients (GFCC [70]) for additive noise experiments reported in this table. These features

are auditory model based and the cepstral coefficients are derived directly from sub-band

energies (instead of log energies). The features are 29 dimensional and are appended with

first order derivatives [70]. We also apply a 9 frame context yielding GFCC features of

dimension 522.

In the experiments reported in Table 5.5, the ETSI technique [64] provides the best

baseline performance in all noise conditions. For almost all noise types and SNR conditions,

the proposed FDLP features provide good improvements over the best baseline features.

The improvements are significant for SNR values above 0 dB.

Although the proposed FDLP-M features provide good improvements on all con-

ditions of telephone, additive noise and reverberant speech (Table. 5.4), the contribution

of various stages to this performance improvement is unknown. In the next section, we

perform various phoneme recognition experiments to determine the importance of various

blocks in FDLP-M feature extraction.

5.6 Relative Contribution of Various Processing Stages

The previous section showed that the proposed feature extraction provides promis-

ing improvements in various types of distortions. In this section, we analyze the contribu-

tion of the various processing stages of the proposed feature extraction technique for robust

phoneme recognition. This is done by a set of phoneme recognition experiments on the

TIMIT database with various modifications of the proposed technique. As before, the sys-
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Name Meaning

V1 Short-term critical band energies

V2 Hilbert envelopes without FDLP

V3 Without gain normalization and noise compensation

V4 Only gain normalization

V5 Only noise compensation

V6 Only static compression

V7 Only adaptive compression

Prop. Proposed technique using static and adaptive compression

of gain normalized and noise compensated FDLP envelopes

Table 5.6: Various modifications to the proposed feature extraction and their meanings.

tem is trained only on clean TIMIT training data, while the test data consists of clean

speech, one condition of additive noise (Babble noise at 10 dB SNR), reverberant speech

from one room response (with a reverberation time of 300 ms) and telephone channel speech

from one set in HTIMIT database.

5.6.1 Modifications

The main processing stages in the proposed technique are the FDLP processing,

gain normalization and noise compensation (Sec. 5.4) and the use of two-stage compression

scheme. Here, we modify these processing stages in various ways to determine their relative

importance in robust phoneme recognition. The various modifications (V1 to V7) with their

meanings are listed in Table 5.6.
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In the first modification (V1), the envelope estimation is done using with trajecto-

ries of short-term critical band energies instead of the FDLP processing. This is similar to

the representation of speech used in MRASTA [22]. Speech signal in short analysis windows

(of length 25 ms) is transformed into spectral domain and the spectral content in individ-

ual critical band is integrated. The remaining processing stages, described in Sec. 5.2, are

applied on these critical band energies.

In the second modification (V2), all steps described in the Sec. 5.2 are performed

except for the linear prediction step. This would mean that the features are derived from

sub-band Hilbert envelopes directly without the use of FDLP.

In modification V3, we implement the FDLP technique without gain normaliza-

tion and noise compensation. Modification V4 implements the FDLP processing with gain

normalization alone. In V4, we omit the step of noise compensation and for V5 we omit the

gain normalization step in the proposed feature extraction method. These modifications

are intended to analyze the contribution of these steps in realizing robust representations

of speech corrupted with additive and convolutive distortions.

In modifications V5 and V6, we analyze the use of two-stage compression mecha-

nism. This is done by using only one type of compression (either static V5 or dynamic V6)

in the proposed feature extraction technique.

5.6.2 Results

The phoneme recognition accuracies obtained for the various modifications are

reported in Table 5.7. The last row of the table shows the result for the proposed feature

extraction technique without any modification (Sec. 5.2). The comparison of V1 with V2
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Feat. Clean Add. noise Rev. Tel.

V1 56.9 38.2 37.9 50.8

V2 60.9 41.5 36.5 52.7

V3 66.5 28.6 28.3 43.0

V4 65.0 33.9 31.9 51.4

V5 62.7 38.7 30.8 46.6

V6 61.1 40.7 34.0 51.6

V7 59.0 38.0 34.2 49.7

Prop. 62.1 43.2 36.9 55.5

Table 5.7: Phoneme recognition accuracies (%) for various modifications to the proposed
feature extraction in clean speech, noisy speech, reverberant speech and telephone channel
speech.

shows that the Hilbert envelopes form an improved representation compared to short-term

critical band energy trajectories. This is partly due to the useful properties satisfied by the

Hilbert envelope (Sec. 2.2).

The modification V2 improves over V1 in clean and noisy conditions7. The im-

provement in performance for the proposed feature extraction over V2 shows that the ap-

plication of FDLP for deriving AR models of Hilbert envelopes improves the overall perfor-

mance in clean and noisy conditions.

The performance of V3 forms the baseline for the proposed noise compensation

technique. Although, V3 provides good performance in clean conditions (corresponding

to the performance in 16 kHz TIMIT database reported in Sec. 5.3), its performance de-

7The short-time energy representation (V1) provides best performance for this reverberant condition.
However, the performance of the proposed FDLP features can be further improved by reducing the model
order at the cost of a reduced performance in clean conditions.

108



CHAPTER 5. MODULATION FEATURES USING FDLP

grades considerably in all noise conditions. The noise compensation technique provides

good robustness in additive noise conditions (V5). When this is applied along with the gain

normalization procedure, the resulting features (Prop.) improve significantly on all types of

distortions. The application of these techniques results in a drop in performance for clean

speech.

The reason for the reduction in performance in clean conditions maybe because

of the following reasons. The gain normalization of the sub-band envelope removes the

gain in each sub-band which can be a useful cue for phoneme recognition of clean speech

(as indicated by a moderate drop in performance in clean conditions for V3 and V4).

Furthermore, noise compensation technique tends to deemphasize the valleys of the envelope

trajectory. As the valleys of the envelope contain information in discriminating certain

phoneme classes (like nasals), there is a reduction in the recognition accuracy in clean

conditions (comparison of V3 and V5). However, the improvements obtained for all types

of mismatched conditions justify the employment of these normalization techniques in the

proposed features. The improvements are significant in telephone conditions (which can

be typically modeled a combined effect of short-term convolutive and additive distortions)

where the convolutive channel distortions are suppressed by the gain normalization and the

additive channel noise effects are reduced by the noise compensation block.

Finally, the application of log compression or adaptive compression alone is worse

than the joint application of these two compression schemes (V6-V7). Although this was

reported in Sec. 5.3.5 for clean conditions, we find here that the joint application of static

and dynamic compression schemes improved the performance in noisy conditions as well.
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5.7 Chapter Summary

In this chapter, we have proposed the FDLP-M (FDLP modulation) features for

phoneme recognition in clean and noisy environment. We began with the discussion of the

modulation feature extraction scheme in Sec. 5.2. The performance of these features on

phoneme recognition experiments in matched conditions is reported in Sec. 5.3. In order to

improve the performance in mis-matched additive noise environments, we develop the noise

compensation technique for FDLP envelopes (Sec. 5.4). Note that, the noise compensation

technique is similar to the conventional spectral amplitude estimator [65] except for the

application of the technique in the sub-band analytic signal domain as opposed to complex

DFT domain.

The usefulness of the gain normalization and noise compensation techniques are

illustrated with phoneme recognition experiments in mis-matched conditions using speech

data corrupted with additive noise, reverberation and telephone channel distortions (Sec. 5.5).

In these experiments, the FDLP-M features provide significant improvements compared to

other noise robust front-ends.

The improvements provided by proposed features is attributed to various stages

in the feature extraction pipe-line. In order to determine the relative contributions of these

steps, we perform several phoneme recognition experiments using various modifications of

the proposed features (Sec. 5.6). The main findings from this analysis can be summarized

as follows:

• The application of linear prediction in frequency domain forms an efficient method

for deriving sub-band modulations.
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• The two-stage compression scheme of deriving static and dynamic modulation spec-

trum results in good phoneme recognition for all phoneme classes even in the presence

of noise.

• The noise compensation technique provides a way to derive robust representation of

speech in almost all types of stationary noise and SNR conditions.

• The robustness of the proposed features is further enhanced by the application of gain

normalization technique.

• The noise compensation techniques provide substantial improvements in additive noise

conditions and performs well in combination with the gain-normalization scheme in

reverberant and telephone channel conditions.

In the next chapter, we investigate the application of FDLP representation for audio coding.
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Chapter 6

FDLP based Audio Coding

6.1 Chapter Outline

Recently, there has been many initiatives in standardization organizations like 3GPP, ITU-

T, and MPEG (for example [71]) that aim for the development of a unified codec which can

efficiently compress all kinds of speech and audio signals and which may require new audio

compression techniques. In traditional applications of speech coding (i.e., for conversational

services), the algorithmic delay of the codec is one of the most critical variables. However,

there are many services, such as audio file downloads, voice messaging etc., where the issue

of the codec delay is much less critical. This allows for a whole set of different analysis

and compression techniques that could be more effective than the conventional short-term

frame based coding techniques.

In this chapter, we present a scalable medium bit-rate wide-band audio coding

for signal sampled at 48 kHz. The encoding technique based on frequency domain linear

prediction (FDLP). The main goal of the proposed audio codec is to illustrate the use of
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FDLP based signal analysis technique for purpose of wide-band audio coding using a simple

compression scheme. The coding technique was first reported in [72].

For the proposed audio codec, relatively long temporal segments (1000 ms) of

the input audio signal are decomposed into a set of critically sampled sub-bands using a

quadrature mirror filter (QMF) bank. The technique of FDLP is applied on each sub-

band to model the sub-band temporal envelopes (Sec. 2.5). The residual of the linear

prediction, which represents the frequency modulations in the sub-band signal, are encoded

and transmitted along with the envelope parameters. These steps are reversed at the

decoder to reconstruct the signal. We perform subjective and objective quality evaluations

using the FDLP codec.

The chapter is organized as follows. The block schematic of the FDLP-codec is

described in Sec. 6.2. Specific techniques for improving the quality of the reconstruction

signal in the FDLP codec are discussed in Sec. 6.3. The results of the objective and sub-

jective evaluations are reported in Sec. 6.4. This followed by a summary of the results in

Sec. 6.5.

6.2 FDLP based Audio Codec

Graphical scheme of the FDLP encoder is given in Fig. 6.1. Long temporal segments (1000

ms) of the full-band input signal are decomposed into frequency sub-bands. In each sub-

band, FDLP is applied to obtain a set of prediction coefficients (Chap. 2). These prediction

coefficients are converted to envelope line spectral frequencies (LSFs) (in a manner similar

to the conversion of TDLP coefficients to LSF parameters).
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Figure 6.1: Scheme of the FDLP encoder.
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Figure 6.2: Scheme of the FDLP Decoder.

The envelope LSFs represent the location of the poles on the temporal domain.

Specifically, the envelope LSFs take values in the range of (0, 2π) radians corresponding to

temporal locations in the range of (0, 1000 ms) of the sub-band signal. Thus, the angles of

poles of the FDLP model indicate the timing of the peaks of the signal (Sec. 2.5).

In each sub-band, these LSFs approximating the sub-band temporal envelopes are

quantized using vector quantization (VQ). The residual signals (sub-band Hilbert carrier
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signals) are processed in transform domain using the modified discrete cosine transform

(MDCT). The MDCT coefficients are also quantized using VQ.

In the decoder, shown in Fig. 6.2, quantized MDCT coefficients of the FDLP

residual signals are reconstructed and transformed back to the time-domain using inverse

MDCT (IMDCT). The reconstructed FDLP envelopes (obtained from LSF parameters) are

used to modulate the corresponding sub-band residual signals. Finally, sub-band synthesis

is applied to reconstruct the full-band signal.

The important blocks are:

6.2.1 Non-uniform sub-band decomposition

A non-uniform quadrature mirror filter (QMF) bank is used for the sub-band decomposi-

tion of the input audio signal. QMF provides sub-band sequences which form a critically

sampled and maximally decimated signal representation (i.e., the total number of sub-band

samples is equal to the number of input samples). In the proposed non-uniform QMF

analysis, the input audio signal (sampled at 48 kHz) is split into 1000 ms long frames.

Each frame is decomposed using a 6 stage tree-structured uniform QMF analysis to pro-

vide 64 uniformly spaced sub-bands. A non-uniform QMF decomposition into 32 frequency

sub-bands is obtained by merging these 64 uniform QMF sub-bands [73]. This sub-band

decomposition is motivated by critical band decomposition in the human auditory system.

Many uniformly spaced sub-bands at the higher auditory frequencies are merged together

while maintaining perfect reconstruction. The non-uniform QMF decomposition provides a

good compromise between fine spectral resolution for low frequency sub-bands and a smaller

number of encoding bits for higher bands.
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In order to reduce the leakage of quantization noise from one sub-band to another,

the QMF analysis and synthesis filters are desired to have a sharp transition band. However,

this would result in a significant delay for the QMF filter bank. Since we use an initial

decomposition using a tree structured QMF filter bank, the overall filter bank delay can be

considerably reduced by reducing the length of filters in the successive stages of the tree.

Although the width of the transition band in the sub-sampled domain increases due to the

reduction in filter length, the transition bandwidth at the original sampling rate remains

the same [74]. The overall delay for the proposed QMF filter bank is about 30 ms.

6.2.2 Encoding FDLP residual signals using MDCT

We propose an encoding scheme for the FDLP residual signals using MDCT. The MDCT,

originally proposed in [75], outputs a set of critically sampled transform domain coefficients.

Perfect reconstruction is provided by time domain alias cancellation and the overlapped

nature of the transform.

For the proposed FDLP codec, the sub-band FDLP residual signals are split into

relatively short frames (50 ms) and transformed using the MDCT. We use the sine window

with 50% overlap for the MDCT analysis as this was experimentally found to provide the

best reconstruction quality (based on objective quality evaluations). Since a full-search VQ

in the MDCT domain with good resolution would be computationally infeasible, the split

VQ approach is employed. Although the split VQ approach is suboptimal, it reduces the

computational complexity and memory requirements to manageable limits without severely

degrading the VQ performance. The quantized levels are Huffman encoded for further

reduction of bit-rates. This entropy coding scheme results in a bit-rate reduction of about
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10%. The MDCT coefficients for the lower frequency sub-bands are quantized using higher

number of VQ levels as compared to those from the higher bands. VQ of the MDCT

coefficients from the FDLP carrier signal consumes about 80% of the final bit-rate.

For the purpose of scaling the bit-rates, all sub-bands are treated uniformly and

the number of VQ levels are suitably modified so as to meet the specified bit-rate. The

current version of the codec follows a simple bit assignment mechanism for the MDCT

coefficients and provides bit-rate scalability in the range of 32-64 kbps.

6.3 Techniques for Quality Enhancement

In this section, we discuss two techniques used in FDLP codec for improving the reconstruc-

tion quality of the audio signal. These techniques are temporal masking [76] and spectral

noise shaping [77].

6.3.1 Temporal Masking

The auditory masking properties of the human ear provide an efficient solution for quan-

tization of a signal in such a way that the audible distortion is minimized. In particular,

temporal masking is a property of the human ear, where the sounds appearing within a

temporal interval of about 200 ms after a signal component get masked.

The long term processing (1000 ms) in the FDLP codec allows for a straightforward

exploitation of the temporal masking, while its implementation in more conventional short-

term spectra based codecs has been so far quite limited.

Temporal masking can be explained as a change in the time course of recovery
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from masking [78]. The amount of forward masking is determined by the interaction of a

number of factors including masker level, the temporal separation of the masker and the

signal, frequency of the masker and the signal and duration of the masker and the signal [78].

A simple first order mathematical model, which provides a sufficient approximation for the

amount of temporal masking, is given as

M [n] = a(b− log10∆t)(X[n]− c), (6.1)

where M is the temporal mask in dB Sound Pressure Level (SPL), X is the signal dB SPL

level, n is the sample index, ∆t is the time delay in ms, a, b and c are the constants. At

any sample point, multiple mask estimates arising from the several previous samples are

present and the maximum value is chosen as the mask in dB SPL. The optimal values of

these parameters, as defined in [79], are as follows:

a = k2f
2 + k1f + k0, (6.2)

where f is the center frequency of the sub-band in kHz, k0, k1 and k2 are constants. The

constant b denotes the duration of the temporal masking and is chosen as log10 200. The

parameter c is the Absolute Threshold of Hearing (ATH) in quiet, defined as:

c = 3.64f−0.8 − 6.5e−0.6(f−3.3)2 + 0.001f4. (6.3)

An alternative SPL definition

A short-term SPL definition is needed to estimate the masking threshold at each sample

index. For this purpose, the signal is divided into 10 ms overlapping frames with frame

shifts of 1 sample. The estimated short term power in SPL is assigned to the middle sample
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of the frame:

X[n] = 10 log10

[

∑n+L
2

i=n−L
2

x2[i]

L

]

, (6.4)

where X is the signal in dB SPL, x denotes the original time domain signal and L denotes

the frame length (10 ms).

In our FDLP codec, the linear forward masking model proposed in [78] is applied to

the QMF sub-band signal. The masking thresholds are determined on the sub-band signal.

These masking thresholds are then utilized in quantizing the sub-band FDLP carrier signals.

Application of the temporal mask for encoding the sub-band FDLP carriers

The number of bits required for representing the sub-band FDLP carrier is reduced in

accordance with the temporal masking thresholds. Since the sub-band signal is the product

of its FDLP envelope and carrier, the masking thresholds for the carrier signal are obtained

by subtracting the dB SPL of the envelope from that of the sub-band signal.

The first step is to estimate the quantization noise present in the base-line version;

if the mean of the quantization noise (in 200 ms sub-band signal) is above the masking

threshold, no bit-rate reduction is applied. If the temporal mask mean is above the noise

mean, then the amount of bits needed to encode that sub-band carrier signal is reduced in

such a way that the noise level becomes similar to the masking threshold. This is illustrated

in Fig. 6.3, where we plot the level of quantization noise in the baseline codec (without

temporal masking), the masking threshold level, and the level of quantization noise after

bit-rate reduction in order to match the masking threshold. A reduction in bit-rate without

loss in quality transpires to improvements in the reconstruction quality at the same bit-rate.
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Figure 6.3: Application of temporal masking to reduce the bits for 200ms region of a sub-
band signal. The figure shows the temporal masking threshold, quantization noise for the
codec without and with temporal masking.

Since the information regarding the number of quantization bits is to be transmit-

ted to the receiver, the bit-rate reduction is done in a discretized manner. In the proposed

version of the codec, the bit-rate reduction is done in 8 different levels (in which the first

level corresponds to no bit-rate reduction). The number of bits to be reduced is dependent

on the difference in dB SPL between the quantization noise and the mask threshold. When

the difference is higher, bit-rate reduction is also high and vice-versa. Also, level of bit-rate

reduction for each sub-band FDLP carrier is sent as side information to the receiver.
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The application of temporal masking results in a bit-rate reduction of 10-15 kbps

without drop in quality [76].

6.3.2 Spectral Noise Shaping

The FDLP codec achieves good compression efficiency for commonly used speech/audio

signals. However, there is need to improve quality of the reconstructed signal for inputs

with tonal components. The technique of FDLP fails to model these signals because of the

impulsive spectral content. Hence, most of the important signal information is present in

the FDLP residual. For such signals, the quantization error in the FDLP codec spreads

across all the frequencies around the tone. This results in significant degradation in the

reconstructed signal quality.

In this section, we propose a technique of spectral noise shaping (SNS) to overcome

the problem of encoding tonal signals in FDLP based speech/audio codec. The technique

is motivated by the fact that tonal signals are highly predictable in the time domain. If

a sub-band signal is found to be tonal, it is analyzed using TDLP [29] and the residual

of this operation is processed with the FDLP codec. At the decoder, the output of the

FDLP codec is filtered by the inverse TDLP filter. Since the inverse TDLP filter models

the spectral impulses for tonal signals, it shapes the quantization noise according to the

input signal. Application of the SNS technique to the FDLP codec improves the quality of

the reconstruction for these signals without affecting the bit-rate.

For improving the reconstruction quality of tonal signals, we include the tonality

detector and the SNS module to the FDLP codec.
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Figure 6.4: Sub-band processing in FDLP codec with SNS.

Implementation of SNS

Fig. 6.4 shows the block schematic of the FDLP codec with SNS. The only ad-

ditional side information is the signaling of the tonality decision to the decoder (32bps).

The tonal sub-band signals are applied to a TDLP filtering block. For the tonal signals,

the TDLP and the FDLP model order are made equal to half the FDLP model order used

for the non-tonal signals. Hence, there is no increase in the bit-rate by the inclusion of the

SNS (except for the signaling of the tonality flag) as the number of LP coefficients to be

quantized remains the same. At the decoder, inverse TDLP filtering applied on the FDLP

decoded signal gives the sub-band signal back.

The technique of SNS is motivated by the fundamental property of the linear pre-

diction: For AR signals, the inverse TDLP filter has magnitude response characteristics

similar to the Power Spectral Density (PSD) of the input signal [29]. Since the quantiza-

tion noise passes through the inverse TDLP filter, it gets shaped in the frequency domain
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Figure 6.5: Improvements in reconstruction signal quality with SNS: A portion of power
spectrum of (a) a tonal input signal, (b) reconstructed signal using the base-line FDLP
codec without SNS, and (c) reconstructed signal using the FDLP codec with SNS.

according to PSD of the input signal and hence the name, spectral noise shaping.

The application of SNS for tonal signals is illustrated in Fig. 6.5, where we show

a portion of power spectrum of the (a) input signal, (b) the reconstructed signal using the

base-line FDLP codec, and (c) reconstructed signal using the FDLP codec with SNS. This

figure illustrates the ability of the proposed technique in reducing the artifacts present in

tonal signals.

The application of SNS for tonal signals result in the objective and subjective

quality improvements as shown in [77]. In the next section, we report the subjective and
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ODG Scores Quality

0 imperceptible

−1 perceptible but not annoying

−2 slightly annoying

−3 annoying

−4 very annoying

Table 6.1: MOS scores predicted by PEAQ and their meanings.

bit-rate [kbps] 64 64 64

Codec LAME AAC FDLP

PEAQ -1.6 -0.8 -0.7

bit-rate [kbps] 48 48 48

Codec LAME AAC FDLP

PEAQ -2.5 -1.1 -1.2

bit-rate [kbps] 32 32 32

Codec LAME AAC FDLP

PEAQ -3.0 -2.4 -2.4

Table 6.2: Average PEAQ scores for 28 speech/audio files at 64, 48 and 32 kbps.

objective quality evaluations using the proposed FDLP codec.
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6.4 Quality Evaluations

The subjective and objective evaluations of the proposed audio codec are per-

formed using audio signals (sampled at 48 kHz) present in the framework for exploration of

speech and audio coding [71, 80]. This database is comprised of speech, music and speech

over music recordings. The music samples contain a wide variety of challenging audio

samples ranging from tonal signals to highly transient signals.

The objective and subjective quality evaluations of the following codecs are con-

sidered:

1. The proposed FDLP codec with MDCT based residual signal processing, at 32, 48

and 64 kbps, denoted as FDLP.

2. LAME MP3 (MPEG 1, layer 3)1, at 32, 48 and 64, kbps denoted as LAME.

3. MPEG-4 HE-AAC, v1, at 32, 48 and 64 kbps [81], denoted as AAC. The HE-AAC

coder is the combination of spectral band replication (SBR) [82] and advanced audio

coding (AAC) [3].

6.4.1 Objective Evaluations

The objective measure employed is the perceptual evaluation of audio quality

(PEAQ) distortion measure [83]. In general, the perceptual degradation of the test signal

with respect to the reference signal is measured, based on the ITU-R BS.1387 (PEAQ)

standard. The output combines a number of model output variables (MOV’s) into a single

measure, the objective difference grade (ODG) score, which is an impairment scale with

1LAME-MP3 codec: http://lame.sourceforge.net
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meanings shown in Tab. 6.1. The mean PEAQ score for the 28 speech/audio files from [80]

is used as the objective quality measure.

The results in Tab. 6.2 also show the average PEAQ scores for the proposed FDLP

codec, AAC and LAME codecs at 64, 48 and 32 kbps. The objective scores for the proposed

FDLP codec at these bit-rates are better than MP3 codec and compares well with the state-

of-art AAC codec.

6.4.2 Subjective Evaluations

In this section, we report the results of subjective evaluations using the FDLP

codec. We report the performance only at 48 kbps. The other results at 64 and 32 kbps

can be found in [72].

For the audio signals encoded at 48 kbps, the MUSHRA (MUltiple Stimuli with

Hidden Reference and Anchor) methodology for subjective evaluation is employed. It is

defined by ITU-R recommendation BS.1534 [84]. We perform the MUSHRA tests on 6

speech/audio samples from the database. The mean MUSHRA scores (with 95% confidence

interval), for the subjective listening tests at 48 kbps (given in Fig. 6.6), show that the

subjective quality of the proposed codec is slightly poorer compared to the AAC codec

but better than the LAME codec. Here, the results are split into individual sample types

(namely speech, mixed and music content). The subjective scores for FDLP codec are

higher for the audio samples with music and mixed content compared to those with speech

content.
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Figure 6.6: MUSHRA results for each audio sample type namely speech, mixed and music
content obtained using three coded versions at 48 kbps (FDLP-MDCT (FDLP), MPEG-
4 HE-AAC (AAC) and LAME-MP3 (LAME)), hidden reference (Hid. Ref.) and 7 kHz
low-pass filtered anchor (LPF7k) with 8 listeners.

6.5 Chapter Summary

In this chapter, we have proposed the FDLP based audio codec for wide-band

high fidelity audio coding. The codec employs a sub-band signal decomposition which is

followed by FDLP analysis to yield the envelope and the carrier signal (Sec. 6.2). These

signal components are encoded and transmitted. At the decoder, the steps are reversed to

obtain the audio signal back. In order to improve the reconstruction quality, the proposed

codec employs novel audio processing techniques like temporal masking and spectral noise

shaping (Sec. 6.3). We perform several objective and subjective quality evaluations to

illustrate the usefulness of the proposed codec (Sec. 6.4).

The performance of the proposed codec is dependent on the efficient processing of
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the FDLP carrier signal. It is important to note that the FDLP codec does not use standard

blocks like simultaneous masking which are widely used in standard codecs [3]. Inclusion of

some of these sophisticated bit-rate reduction techniques should further reduce the target

bit-rates and enhance the bit-rate scalability.

The present chapter along with the Chap. 4 and Chap. 5 has shown that FDLP

based signal analysis can be used for various signal applications like speech recognition,

modulation feature extraction and coding. In the next chapter, we show discuss future

extensions of the proposed methodologies.
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Summary and Future Extensions

7.1 Chapter Outline

In this chapter, we summarize the important contributions from this thesis. We highlight

different properties of the FDLP model which make it useful in various applications. We

also discuss the limitations of the FDLP model and the scope of applicability. The chapter

ends with a brief outline of various extensions of this thesis.

Sec. 7.2 highlight the main contributions of the thesis. Sec. 7.3 discusses the

limitations and scope of the thesis in speech signal processing. Finally, we discuss various

extensions of the FDLP technique in Sec. 7.4. We conclude the chapter in Sec. 7.5

7.2 Contributions of the Thesis

In this thesis, we have proposed the use of long-term AM-FM modeling for representing

speech/audio signals. This approach is fundamentally different from the conventional short-
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term spectrum based analysis. Specifically, we have developed an AR model of sub-band

Hilbert envelope and derived two-dimensional time-frequency representation of signals using

these models.

The thesis also developed various techniques for robust representation of speech

signals in noisy and reverberant environments. These techniques were applied along with

FDLP model for developing feature extraction methodologies. We use these representation

to develop two types of acoustic features - the short-term features (FDLP-S) which are

similar to conventional MFCCs and the long-term high dimensional modulation features

(FDLP-M). By efficient encoding of FDLP carrier signal, we also apply the FDLP analysis

for audio coding task.

The novel contributions from this thesis can be summarized as -

1. A simple mathematical proof for the AR model of Hilbert envelopes (Chap. 2,

Sec. 2.5) - The main difference between our derivation and those present in [27] is

that the proposed method uses a algebraic and verbal method for arguments in the

derivation and makes mild assumptions (of zero mean property in time and frequency

domain) to simplify the analysis. The underlying steps involved are a simplistic ver-

sion of the matrix derivation [27]. The proof provided in [26] uses analog signal

notations. Here, we use basic Fourier transform relations and discrete time analytic

signal representations.

2. Understanding the resolving power of AR modeling (Chap. 2, Sec. 2.6) -

To the best of our knowledge, the investigation of resolution properties of AR models

has not been done in the past. We define a measure of resolving power as the critical
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duration below which two peaks in the input merge together at the output of the AR

model. Then, we experiment with signals having two distinct peaks whose locations

are varied to determine the critical duration. This analysis shows that the critical

duration (resolution) is dependent on the starting location of the peak. Higher resolu-

tion (lower critical duration) is obtained at the center of the window. The resolution

is also dependent the type of window used and model order. One possible solution

to improve the resolution at the boundaries of the window is by padding the signal

(even-symmetrically).

3. Gain normalization of FDLP envelopes (Chap. 3, Sec. 3.5) - The effect of

convolutive artifacts like room reverberation on the FDLP envelope can be analyzed.

With a first-order approximation and the use of a long-term narrow-band analysis,

we have shown that the effect of reverberation can be suppressed by normalizing the

gain of the sub-band FDLP model. The gain normalization reduces the mis-match

between the envelopes extracted from clean and reverberant speech.

4. Short-term feature extraction for speech and speaker recognition (Chap. 4

) - Short-term feature extraction is obtained by integrating the FDLP spectrogram in

short-term windows. The envelopes are derived from gain normalized FDLP model.

These features are similar to conventional MFCC features. In speech recognition, the

gain normalization for FDLP-S features provides significant improvements in rever-

berant and telephone channel conditions. Furthermore, the trade-off in the choice of

various parameters like type of window, FDLP model order, envelope expansion factor

and the nature of sub-band analysis have been investigated along with their influence
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on the final ASR performance.

5. Modulation feature extraction for phoneme recognition (Chap. 5 ) - We

propose a modulation feature extraction scheme using FDLP spectrogram. We use a

two-stage processing with static and dynamic compression. The compressed envelopes

are converted into modulation features in syllable length segments. We also derive a

noise compensation scheme for temporal envelope estimation in additive noise condi-

tions. Various phoneme recognition experiments are done to illustrate the usefulness

of these representations as well as to investigate the contribution of various modules

in the feature computation.

6. Audio coding using FDLP (Chap. 6 ) - We propose a wide-band high fidelity

audio coding technique using FDLP based analysis in each QMF sub-band. Efficient

encoding scheme is developed using the application of novel techniques like temporal

masking and spectral noise shaping.

In the next section, we outline the various assumptions and limitations used in the FDLP

model and the scope of applicability of FDLP based analysis in speech/audio systems.

7.3 Limitations of FDLP analysis

The FDLP model was proposed as an unified signal analysis technique using the sub-band

AM-FM decomposition. This model has some fundamental limitations and assumptions

which are detailed in this section.
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• Limitations in AR modeling - The major assumption in the FDLP model is that

the envelope can be approximated using an all-pole model. When the envelope has

zeros, or when the envelope is constant over the entire analysis window, the FDLP

representation is unable to approximate the envelope. A simple example is that a

sinusoid cannot be well represented using the FDLP model. One possibility to model

such a sinusoid is the use of a TDLP model before the FDLP (spectral noise shaping,

Sec. 6.3.2).

• Convolution model in gain normalization - The gain normalization procedure

assumes typical characteristics of room-response functions (like the spectrum of the

narrow-band envelope estimated in long-term windows to be slowly varying). For any

arbitrary convolution, this assumption need not be valid. Thus, only the slowly vary-

ing part of the convolution can be suppressed using the gain normalization technique.

• Finding the optimal variable set - As mentioned in Chap. 4 and Chap. 5, a number

of parameters are involved in the FDLP model like the choice of window type, the

number of sub-bands used in the analysis, the model order in FDLP, and the choice

of using gain normalization and noise compensation. Although these parameters offer

flexibility in feature extraction, choosing the optimal parameter values for a given task

can be cumbersome. Nevertheless, we note that reasonable parameter choices can be

made from the results of recognition experiments reported in Chap. 4 and Chap. 5.

• Processing delay in FDLP - The FDLP model operates on long-term segments

of the input signal. Thus, there is an inherent delay in the model computation. For

applications like speech and speaker recognition, this delay can be accommodated as
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the recognition system often operates over an utterance (long-segment). However, real

time recognition system using the FDLP model needs further investigation using low-

delay feature extraction techniques (either by applying a running window over the past

speech segment or by reducing the window segment length). In coding applications,

the reduction of delay causes moderate increase in bit-rate. For example, in one of

the versions of the proposed codec a reduction in delay from 1000 ms to 200 ms was

obtained using a 5 % increase in bit-rate [85].

• Computational complexity - The computational complexity of the feature extrac-

tion schemes are more than the conventional ones. In a pilot study, we compared

the FDLP feature extraction scheme with the PLP feature extraction in terms of

computation time using MATLAB1. For FDLP-S features extracted using bark scale

(similar to PLP features which use bark scale decomposition), the computation time

was 3× of the conventional PLP features. The computation time doubled (6×) for

mel scale FDLP features and it was quadrupled (12×) for linear decomposition using

96 bands. The computation time for modulation features (FDLP-M) was about 4×

that of conventional 39 dimensional PLP features.

In the next section, we propose some extensions of the proposed thesis. Although

a number of extensions can be possible, we limit the discussion to focus on the topics which

have already shown some promise.

1The computation time was obtained from a set of TIMIT utterances using MATLAB implementation
of FDLP-S and FDLP-M features. The baseline was the PLP feature extraction implemented in MATLAB
- “http://labrosa.ee.columbia.edu/matlab/rastamat/”.
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7.4 Future Extensions

In this section, we discuss potential extensions of the proposed techniques for speech and

audio processing.

7.4.1 Modulation features for speaker recognition

The modulation features have been proposed in Chap. 5 for phoneme recognition appli-

cations. In this section, we try to extend the applicability of the modulation features for

speaker recognition. These features carry information about the modulation components

in each sub-band which are not present in the STFT based features like MFCC. Thus,

the modulation features can convey important complementary information to conventional

speaker recognition systems using MFCC. Furthermore, modulation feature extraction for

speaker recognition is a relatively unexplored concept (one notable exception may be [86].)

Implementation

We use the concatenation of the modulation components (Sec. 5.2) from all the bark bands

(17 bands with a bandwidth of approx. 1 bark) to obtain a feature vector of dimension

238. This high dimensional feature is reduced in dimensions using principal component

analysis (PCA). PCA is done on a subset of the development data to obtain the mean and

covariance statistics. We use 80 eigenvectors (with the highest eigen values) of the data

covariance matrix for projecting the high dimensional vectors to a lower dimensional feature

of 80 dimensions. The dimensionality reduction enables to decorrelate the highly correlated

modulation features and reduces the number of dimensions to manageable levels. These
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Feature. C1 C2 C3 C4 C5 C6 C7 C8

MFCC 28.8 3.2 29.7 35.5 32.1 41.1 15.5 15.0

(5.3) (0.8) (5.4) (7.8) (7.9) (7.6) (3.3) (3.5)

FDLP-M 32.3 5.1 33.4 45.9 42.7 58.5 20.7 21.3

(6.6) (0.9) (6.8) (11.7) (11.4) (10.5) (4.7) (5.7)

Fusion 25.2 2.4 26.1 29.6 28.3 39.9 13.5 13.5

(4.8) (0.7) (4.9) (6.9) (6.9) (7.0) (2.3) (2.5)

Table 7.1: Performance of modulation features in terms of min DCF (×103) and EER (%)
in parantheses.

features are then short-term Gaussianized [50] and are used for speaker verification task

using the GMM based system (similar to the system described in Sec. 4.5).

Preliminary Results

The results for the speaker verification task in the NIST 2008 SRE challenge using the

temporal features is shown in Table. 7.1. The temporal features perform worse compared to

the baseline MFCC features. However, these feature contain good amount of complimentary

information which is not present in conventional MFCC features. Hence, combining the two

systems2 provides noticeable improvements for all the conditions (relative improvement of

about 10− 15 % over the baseline features).

2We use a combination using [0.75,0.25] weights for the baseline features and temporal feature and the
combination is done directly on the evaluation data for these preliminary results.
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Future Work

The PCA forms just one example of a dimensionality reduction procedure. There can

be many other ways of dimensionality reduction (for example, by reducing the number of

modulation components or the number of sub-bands as proposed in [86]). Furthermore, the

adaptive compression stream has not been used in the above analysis3. Thus, more inves-

tigation is required to illustrate the utility of modulation features for speaker recognition.

7.4.2 Two-dimensional AR models

In a previous attempt, 2-D AR modeling was proposed by alternating the AR models

between spectral and temporal domains [87]. However, the model used relatively short

segments of speech (250 ms) in bark bands. On a speech recognition task, these features

performed similar to PLP [87].

In this section, we investigate the extension of FDLP model to a 2-D time-

frequency auto-regressive (AR) model. The first AR model is derived using FDLP, which

provides an efficient representation of sub-band Hilbert envelopes (Chap. 2). Then, these

sub-band envelopes are converted to short-term energy estimates which are used as power

spectral estimates in the second AR model. The output of the second AR model is con-

verted to cepstral coefficients. Here, we propose the application of these features for speaker

recognition task.

3A combination of log and adaptive compression scheme gives good performance in phoneme recognition
experiments (Sec. 5.3.5).
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Figure 7.1: Block schematic of 2-D AR model based feature extraction.

Implementation of 2-D AR model

The block schematic for the proposed feature extraction is shown in Fig. 7.1. The initial

steps are similar to the FDLP-S feature extraction proposed in Chap. 4.

Long segments of the input speech signal (10s) are transformed to the frequency

domain using a DCT. The full-band DCT signal is windowed into a set of 96 linear sub-

bands. In each sub-band, linear prediction is applied on the sub-band DCT components to

estimate an all-pole representation of Hilbert envelope. We use a model order of 30 poles

per sub-band per second. This step constitutes the first AR model.

The FDLP envelopes in each sub-band are integrated in short-term frames (25ms

with a shift of 10ms). The output of the integration process provides an estimate of the

power spectrum of signal in the short-term frame at the resolution of the initial sub-band

decomposition. These power spectral estimates are inverse Fourier transformed to obtain

a set of auto-correlation sequence which are used in TDLP. We use a model order of 12 in

the TDLP model. The output LP parameters of this 2-D AR model are transformed to

13 dimensional cepstral coefficients using the standard cepstral recursion [37]. Delta and
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Feature. C1 C2 C3 C4 C5 C6 C7 C8

MFCC 31.0 0 32.9 39.8 29.8 31.3 9.0 9.3

(5.9) (0) (6.4) (6.0) (6.3) (7.6) (2.6) (1.4)

FDLP-S 21.6 0 23.0 29.9 25.9 38.9 11.9 7.3

(4.3) (0) (4.6) (5.9) (7.2) (8.6) (2.9) (1.4)

2-D AR model 18.1 0 18.9 28.8 32.4 41.6 12.5 6.6

(3.4) (0) (3.6) (5.9) (9.4) (10.0) (2.9) (1.4)

Table 7.2: Speaker recognition performance on a subset of NIST 2008 SRE in terms of min
DCF (×103) and EER (%) in parantheses.

acceleration coefficients are extracted to obtain 39 dimensional features which are used for

speaker recognition.

Preliminary Results

The results for preliminary experiments are shown in Table. 7.2. Note that, these results

are reported on a subset of the NIST 2008 task which are decimated from the full version

by a factor of 10. Thus, the baseline results on this subset are different from the results

reported previously in Table 7.1.

In these results (Table. 7.2), 2-D AR model features perform better than the

FDLP-S and MFCC features in microphone conditions (C1-C4). However, in cross channel

and telephone conditions (C5-C7), the performance is worse.
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Future Work

There is a scope for further extensions in terms of band-pass filtering the temporal and

spectral AR models. For example, human speech perception is sensitive to certain range of

temporal and spectral modulations [6]. This can be implemented in the 2-D AR model by

filtering the cepstral coefficients obtained from the spectral and temporal AR model. By

filtering these modulations, the 2-D AR model features can achieve robustness in noisy and

reverberant conditions.

7.5 Chapter Summary

In this chapter, we have outlined various contributions of this thesis (Sec. 7.2).

We have also described the limitations and scope of applicability of the FDLP approach in

Sec. 7.3. Finally, we discuss some extensions of the FDLP technique for feature extraction

as well as speech activity detection (Sec. 7.4).
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Appendix A

Properties of Hilbert Transforms

A.1 Definition of the Linear Filter Model

In this section, we try to model the ideal Hilbert transform using the linear filter

model. Some of these properties are derived in [88]. We define the important properties of

required Hilbert transform H,

H
[

cos(ω0t)
]

= sin(ω0t) (A.1)

H
[

sin(ω0t)
]

= cos(ω0t) (A.2)

for any frequency ω0 of interest. Assuming the above operation can be modeled using a

linear filter, this can be written in the frequency domain1

{

δ(ω − ω0) + δ(ω + ω0)
}

×H(ω) = −j
{

δ(ω − ω0)− δ(ω + ω0)
}

(A.3)

{

δ(ω − ω0)− δ(ω + ω0)
}

×H(ω) = −j
{

δ(ω − ω0) + δ(ω + ω0)
}

(A.4)

1Here, we use Kronecker delta functions assuming the integrable nature of these functions. In a strict
Lebesgue sense, these function integrate to 0. However, we assume these impulse functions as the Fourier
transform of trigonometric functions.
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where we have used,

cos(ω0t)
F⇐⇒ δ(ω − ω0) + δ(ω + ω0)

2

and

sin(ω0t)
F⇐⇒ δ(ω − ω0)− δ(ω + ω0)

2j

and H(w) denotes the frequency response of the Hilbert transform filter. From Eq. A.3 and

Eq. A.4, we can write,

H(ω) =























j for ω < 0

−j for ω ≥ 0

(A.5)

In other words, H(ω) = −jSgn(ω). In the time domain the corresponding filter can be

obtained as,

h(t) =
1

2π

∫ ∞

−∞
−jSgn(ω)ejωtdω (A.6)

=
1

2π

∫ 0

−∞
jejωtdω −

∫ ∞

0
jejωtdω

=
1

πt

Thus, the Hilbert transform of a signal x(t) in the time domain can be written as,

H
[

x(t)
]

=
1

π

∫ ∞

−∞

x(t− τ)

τ
dτ (A.7)

Since the above integral has a unbounded value at τ = 0, we define the Hilbert operator

using Cauchy principle value (CPV),

H
[

x(t)
]

= lim
ǫ→0

1

π

[
∫ ǫ

−∞

x(t− τ)

τ
dτ +

1

π

∫ ∞

ǫ

x(t− τ)

τ
dτ

]

(A.8)
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A.2 Hilbert Transform of a Cosine

In this section, we find the Hilbert transform, defined by Eq. A.7, of an input

signal x(t) = cos(t). Eq. A.7 can be re-written as,

H[cos(t)] =
1

π

∫ ∞

−∞

cos(t− τ)

τ
dτ (A.9)

=
1

π
cos(t)

∫ ∞

−∞

cos(τ)

τ
dτ +

1

π
sin(t)

∫ ∞

−∞

sin(τ)

τ
dτ

Now, since cosine is an even function and sine is an odd function we have,

∫ ∞

−∞

cos(τ)

τ
dτ = 0 (A.10)

∫ ∞

−∞

sin(τ)

τ
dτ = 2

∫ ∞

0

sin(τ)

τ
dτ

= 2

∫ ∞

0

∫ ∞

0
e−sτsin(τ)dτds

where we have used 1
τ
=

∫∞
0 e−sτds and we have assumed suitable properties for a change

of integral. Now, we need to show the Laplace transform of a sine function,

∫

sin(τ)e−sτdτ = cos(τ)e−sτ + s

∫

cos(τ)e−sτdτ (A.11)

= cos(τ)e−sτ − ssin(τ)e−sτ − s2
∫

sin(τ)e−sτdτ

(1 + s2)

∫ ∞

0
sin(τ)e−sτdτ = 1 (A.12)

(A.13)

where we have used integration by parts twice and evaluated the value of the integral using

the limits. Substituting Eq. A.12 in Eq. A.10, we get,

∫ ∞

−∞

sin(τ)

τ
dτ = 2

∫ ∞

0

1

1 + s2
ds (A.14)

= 2

∫ π
2

0

1

1 + tan2θ
sec2θdθ

= π (A.15)

143



APPENDIX A. PROPERTIES OF HILBERT TRANSFORMS

where we have used a substitution of variables s = tanθ. Now, substituting the value of

Eq. A.14 and Eq. A.10 in Eq. A.9, we arrive at the fundamental result,

H[cos(t)] = sin(t) (A.16)

This result satisfies the requirement of the Hilbert transform mentioned in Eq. A.1. A

similar proof can be shown for the Hilbert transform of a sine wave.

A.3 Analytic Signal for Convolution

Let r(t) be defined as,

r(t) = x(t) ∗ y(t), (A.17)

and let xa(t), ya(t) and ra(t) denote the analytic signal of x(t), y(t) and r(t) (defined using

the Eq. 2.3). Now,

ra(t) = r(t) + jH[r(t)] (A.18)

= x(t) ∗ y(t) + jx(t) ∗ y(t) ∗ h(t) (A.19)

where h(t) is the Hilbert filter defined in Eq. A.6. From Eq. A.5, we note that H(ω) =

−jSgn(ω). Then,

h(t) ∗ h(t) = F−1
[

H(ω)H(ω)
]

(A.20)

= −1

Combining Eq. A.20 and Eq. A.19 we can write,

ra(t) =
1

2
[x(t) ∗ y(t)]− 1

2
[x(t) ∗ y(t) ∗ h(t) ∗ h(t)] + j

2

[

x(t) ∗ (y(t) ∗ h(t))
]

+
j

2

[

(x(t) ∗ h(t)) ∗ y(t)
]

=
1

2

[

x(t) + j(x(t) ∗ h(t))
]

∗
[

y(t) + j(y(t) ∗ h(t))
]

(A.21)
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where we have split the two terms of Eq. A.19 into two halves and used the linearity and

associative property of convolution operator. Now, using Eq. A.7 and Eq. 2.3 we find that

x(t) + j(x(t) ∗ h(t)) = x(t) + jH[x(t)] = xa(t). Thus, Eq. A.21 can be simplified as

ra(t) =
1

2
xa(t) ∗ ya(t) (A.22)

Thus, the analytic signal of the convolved output is a equal to half of the convolution of

the individual analytic signals.
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Appendix B

Minimum Phase Property of

Linear Prediction

In this chapter, we prove the minimum-phase property of linear prediction poly-

nomial. The minimum-phase property implies that all the roots of the linear prediction

polynomial lie inside the unit-circle.

The following proof is obtained from [89]. In this derivation, we use expectation

operator instead of summations for defining the auto-correlations, i.e. auto-correlation of a

discrete sequence x[n] is defined as,

rx[τ ] = E
[

x[n]x[n− τ ]
]

(B.1)

Let D(z) =
∑p

k=0 akz
−k denote the Z-transform of the optimal linear prediction filter {ak}

for k = 0, ... , p with a0 = 1. From the property of least squares optimization, the resulting

LP residual error is orthogonal to the past p samples of the input, i.e., let e[n] denote the
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prediction error signal. Then, we have,

E
[

e[n]x[n− k]
]

= 0 (B.2)

for k = 1, ... , p. Let α denote any root of D(z) and let L(z) denote the polynomial removing

the zero at α, i.e., D(z) = (1− αz−1)L(z). Note that, L(z) denotes a p− 1 order filter. In

order to prove the minimum-phase property, we need to show |α| < 1, for every root α of

D(z).

Let u[n] denote the output when the signal x[n] is filtered with L(z). In other

words, since D(z) = (1− αz−1)L(z) and e[n] = x[n] ∗ d[n], we can write,

u[n] = l[n] ∗ x[n] =
p−1
∑

k=0

l[n]x[n− k] (B.3)

e[n] = u[n]− αu[n− 1] (B.4)

where L(z) =
∑p−1

n=0 l[n]z
−n with l[0] = 1. From the orthogonality property (Eq. B.2), we

note that,

E
[

e[n]u[n− 1]
]

= 0 (B.5)

Combining Eq. B.4 and Eq. B.5 gives

E
[

{u[n]− αu[n− 1]}u[n− 1]
]

= 0 (B.6)

ru[1] = αru[0] (B.7)
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Further, using Eq. B.4, we can write the variance of the optimal LP error as,

E
[

|e[n]|2
]

= E
[

e[n]{u[n]− αu[n− 1]}∗
]

= E
[

e[n]u∗[n]
]

= E
[

{u[n]− αu[n− 1]}u∗[n]
]

= ru[0]− αr∗u[1]

= ru[0](1− |α|2) (B.8)

where we have used Eq. B.5 in the second step and Eq. B.7 in the last step and u∗ denotes

complex conjugation of u. Assuming that x[n] is not fully predictable, we have E
[

|e[n]|2
]

>

0. This would mean that (from Eq. B.8)

|α| < 1 (B.9)

Since this is true for any zero α, we have the minimum-phase property of the linear prediction

polynomial.

The minimum-phase property guarantees that the poles of the resulting LP power

spectrum lie inside the unit-circle in the complex frequency plane.
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Appendix C

Two-Dimensional Representation

of Signals

C.1 Comparison of Spectrograms for Synthetic Signals

In Sec. 4.2.1, we have shown the FDLP spectrogram (Fig. 4.3) of a synthetic signal

plotted in Fig. 4.2. In this section, we show the corresponding spectrogram for various types

of STFT.

C.1.1 Wide-band spectrogram

The wide-band STFT spectrogram is obtained by 25 ms Hamming window with

a half overlap between neighboring frames. We use a 256 point DFT within each analysis

frame and plot the magnitude of STFT in each frame. These are stacked in a column manner

to obtain the plot shown in Fig. C.1. As seen in this figure, the wide-band spectrogram can

resolve the location of temporal spike with a good accuracy. However, the spectral locations
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Figure C.1: Wide-band STFT spectrogram for the signal in Fig. 4.2 using 25 ms window
with half overlap.

are not well-resolved in this representation.

C.1.2 Narrow-band spectrogram

The narrow-band STFT spectrogram is obtained by 200 ms Hamming window with a half

overlap between neighboring frames. The narrow-band spectrogram is plotted in Fig. C.1.

As seen in this plot narrow-band STFT spectrogram has a good spectral resolution but

does not locate the temporal spike accurately.
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Figure C.2: Narrow-band STFT spectrogram for the signal in Fig. 4.2 using 200 ms window
with half overlap.
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