E9: 309 ADL 14-12-2020

http://leap.ee.iisc.ac.in/sriram/teaching/ADL2020/

Midterm project II - Abstract submission deadline 15/12/2020

Presentation deadline - Dec. 29th, 30th (time will be announced)

Recap from previous lecture

Analyzing trained neural networks

Hierachical representations

Maximizing activations

Visualizing Higher-Layer Features of a Deep Network

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent Dept. IRO, Université de Montréal P.O. Box 6128, Downtown Branch, Montreal, H3C 3J7, QC, Canada first.last@umontreal.ca **Technical Report 1341** Département d'Informatique et Recherche Opérationnelle

Learning the input pattern of a trained network

- Choose a trained neural network
- Find input patterns that maximize the activations from that neuron
- Solved using gradient ascent

Hierachical representations in deep networks

Visualizing and Understanding Convolutional Networks

Matthew D. Zeiler and Rob Fergus

Dept. of Computer Science, New York University, USA {zeiler,fergus}@cs.nyu.edu

Hierachical representations in deep networks

Hierachical representations in deep networks

[Zeiler, 2014]

Object Identity

Edges

Pixels

UNDERSTANDING HOW DEEP BELIEF NETWORKS PERFORM ACOUSTIC MODELLING

Garcia-Romero, Daniel, et al. "Speaker diarization using deep neural network embeddings." 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. Abdel-rahman Mohamed, Geoffrey Hinton, and Gerald Penn

2012

Department of Computer Science, University of Toronto

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS VOL. 23, NO. 1, JANUARY 2017

Visualizing the Hidden Activity of Artificial Neural Networks

Paulo E. Rauber, Samuel G. Fadel, Alexandre X. Falcão, and Alexandru C. Telea

SVHN dataset

MNIST dataset

10

20

Ú

10

20

Û

10

20

CIFA10 dataset

Understanding Deep Networks

tSNE projection of last layer of the neural network.

Fig. 3. Projection of the last MLP hidden layer activations, MNIST test subset. a) Before training (NH: 83.78%). b) After training (NH: 98.36%, AC: 99.15%). Inset shows classification of visual outliers.

Understanding Deep Networks

Fig. 5. Projection of the MLP hidden layer activations after training, SVHN test subset. a) First hidden layer (NH: 52.78%). b) Last hidden layer (NH: 67%).

Understanding deep networks

Fig. 9. Projection of last CNN hidden layer activations after training, CIFAR-10 test subset (NH: 53.43%, AC: 78.7%).

Understanding Deep Networks

Understanding Deep Networks

Fig. 12. Activation and neuron projections of last CNN hidden layer activations before and after training, *MNIST* test subset. Neuron projection colors show the neurons' power to discriminate class 8 vs rest.

Speech Recognition (Acoustic modeling)

Classical machine learning - train a classifier on speech training data that maps to the target phoneme class.

Speech recognition

deep belief networks perform acoustic modelling." 2012 IEEE International

Mohamed, Abdel-rahman, Geoffrey Hinton, and Gerald Penn. "Understanding how Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2012.

E-SNE

8-layer DNN

Summary thus far

- ★ Deep neural networks perform hierarchical data abstractions
 - ✓ Early layers form representations that are less oriented towards the task.
 - Later layers form representations that more oriented to the task.
- ★ Connections with biological processing of audio/images.

Can we quantify the degree to which a particular layer is general or specific?

several layers?

🔀 Where does this transition take place: near the first, middle, or last layer of the network?

Does the transition occur suddenly at a single layer, or is it spread out over

How transferable are features in deep neural networks?

Jason Yosinski,¹ Jeff Clune,² Yoshua Bengio,³ and Hod Lipson⁴ ¹ Dept. Computer Science, Cornell University ² Dept. Computer Science, University of Wyoming ³ Dept. Computer Science & Operations Research, University of Montreal ⁴ Dept. Mechanical & Aerospace Engineering, Cornell University

E9:309 Advanced Deep Learning

2013

- B. This network is a control for the next transfer network.
- new target dataset B.

A selfer network B3B: the first 3 layers are copied from baseB and frozen. The five higher layers (4–8) are initialized randomly and trained on dataset

A transfer network A3B: the first 3 layers are copied from baseA and frozen. The five higher layers (4–8) are initialized randomly and trained toward dataset B. Intuitively, here we copy the first 3 layers from a network trained on dataset A and then learn higher layer features on top of them to classify a

Can we quantify the degree to which a particular layer is general or specific?

Does the transition occur suddenly at a single layer, or is it spread out over several layers?

🔀 Where does this transition take place: near the first, middle, or last layer of the network?

DCN

living - 550 non-living - 450

