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Housekeeping

* Midterm project III

v Evaluation after final exam (lst week of Feb)

* Final Exam (as per IISc schedule)

v Jan 23rd afternoon!

* Extra class (Friday 15, nov, 430pm)




Modeling uncertainity in deep learning




Modeling uncertainty in deep learning

* Standard deep learning tools for regression and classification do not
capture model uncertainty.

* In classification, predictive probabilities obtained at the end of the pipeline
(the softmax output) are often erroneously interpreted as model confidence.
A model can be uncertain in its predictions even with a high softmax output.

* With model confidence at hand we can treat uncertain inputs and special
cases explicitly. For example, 1n the case of classification, a model might
return a result with high uncertainty. In this case we might decide to pass
the input to a human for classification.




* Bayeslian probability theory offers us mathematically grounded tools to
reason about model uncertainty, but these usually come with a prohibitive
computational cost.

* Goal - show that the use of dropout (and its variants) in NNs can be
Interpreted as a Bayesian approximation of a well known probabilistic
model.

* Goal - Develop tools for representing model uncertainty of existing dropout
NNs — extracting information that has been thrown away so far. This
mitigates the problem of representing model uncertainty in deep learning
without sacrificing either computational complexity or test accuracy.




Bayesian Deep Learning (Basics)




Roadmap

* Bayesian methods
v Combine prior models with data to generate posterior distributions
* Neural networks
v learn functions of the data
v need priors defined on functions
e Example Gaussian process

* Links of Bayesian learning to practices in deep learning like dropout




Priors on functions (Gaussian Process)




Introduction to Gaussian Processes
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Definition of Gaussian process

* A Gaussian Process 1s a collection of random variables, any finite number of
which have (consistent) joint Gaussian distributions.

* A Gaussian process 1s fully specified by its mean function m(x) and
covarlance function k(x, x ).

f~N(m, k)

* This 1s a natural generalization of the Gaussian distribution whose mean and
covarlance 1s a vector and matrix, respectively. The Gaussian distribution is
over vectors, whereas the Gaussian process 1s over functions.




Introduction to Gaussian processes

* The individual random variables in a vector from a Gaussian distribution
are indexed by their position in the vector.

* For the Gaussian process it 1s the argument x (of the random function {(x))
which plays the role of index set: for every input x there 1s an assoclated
random variable f(x), which is the value of the (stochastic) function { at that
location.

* For reasons of notational convenience, we will enumerate the x values of
interest by the natural numbers, and use these indexes as if they were the
indexes of the process




Introduction to Gaussian processes

L1 f(x1)
. T2 o f(x2)
TN f(xn)
x ~ N(p,X) f ~N(m(x),k(x,x"))

* Mean will be function of x and variance will also be functions of two data points.




Introduction to Gaussian processes

* Let us consider an example

k(z,2') = exp(—5(z — 2')%)

= Glven the x-values we can evaluate the vector of means and a covariance
matrix
1 2

i = m(x;) = 4 i

|

f ~N(p,X)
255 = k’(%,%‘) — €$p( 2(372‘ — mj)z)




Introduction to Gaussian processes

T1 f(x1)
. $'2 o f(ff<2)
TN f(xn)




Gaussian process - Example

Fig. 1. Function values from three functions drawn at random from a GP as specified
in Eq. (2). The dots are the values generated from Eq. (4), the two other curves have
(less correctly) been drawn by connecting sampled points. The function values suggest
a smooth underlying function; this is in fact a property of GPs with the squared
exponential covariance function. The shaded grey area represent the 95% confidence
intervals




Gaussian processes for Bayesian inference

*x GP will be used as a prior for Bayesian inference.

* The prior does not depend on the training data, but specifies some
properties of the functions.

* One of the primary goals computing the posterior is that it can be used to
make predictions for unseen test cases.

* Let f be the known function values of the training cases, and let {x be a set of
function values corresponding to the test set inputs, Xx.
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Gaussian processes for Bayesian inference

* Now the quantity of interest is the posterior distribution (for function values)

flf ~ N (p, + 2,2 (f—p), T — 2, 27'5,)

* Thus,

fDNQP(?TLD,]CD>
mD(@: m(x) + X(X,z)" 27 (f — m)
23X, ) 2TIE(X, 2




Gaussian Processes

* where 2(X, X) 1s a vector of covariances between every training case and x.
These are the central equations for Gaussian process predictions.

* Let’s examine these equations for the posterior mean and covariance.
Notice that the posterior variance kD(x, x) 1s equal to the prior variance k(x,
X) minus a positive term, which depends on the training inputs;

* thus the posterior variance is always smaller than the prior variance, since
the data has given us some additional information




Allowing for noise in the model

* Need to address one final issue: noise in the training outputs.

* It 1Is common to many applications of regression that there is noise in the
observationsob.

* The most common assumption is that of additive 1.1.d. Gaussian noise in the
outputs.

* In Gaussian process, the effect is that every f(x) has a extra covariance with
itself only (since the noise 1s assumed independent), with a magnitude
equal to the noise variance:




Allowing for noise in the model

y(z) = f(z)+€ e~N(0,0,)
f~GP(Lk), y~GP(m,k+0c25;)

* Notice, that the indexes to the Kronecker’s delta is the 1identify of the cases,
1, and not the inputs x1; you may have several cases with identical inputs,
but the noise on these cases 1s assumed to be independent.




Allowing for noise in the model

Fig. 2. Three functions drawn at random from the posterior, given 20 training data
points, the GP as specified in Eq. (3) and a noise level of o, = 0.7. The shaded area,
gives the 95% confidence region. Compare with Figure 1 and note that the uncertainty
goes down close to the observations




Dropout and its Bayesian Interpretation




Broad goal

* Interpretation of dropout as a Bayesian model

v offers an explanation to some of its properties, such as its ability to avoid
over-fitting

v our insights allow us to treat NNs with dropout as fully Bayesian models,
and obtain uncertainty estimates over their features.

* Mathematically,

- we will show that a deep neural network (NN) with arbitrary depth and
non-linearities, with dropout applied before every weight layer, is
mathematically equivalent to an approximation to the probabilistic deep
Gausslan process model




Dropouts

Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning

Yarin Gal YG279@CAM.AC.UK
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University of Cambridge




Dropout in NN

* Reviewing the dropout NN model quickly for the case of a single hidden
layer NN. This 1s done for ease of notation, and the generalisation to
multiple layers is straightforward.

* Denote by W1,W2 the weight matrices connecting the first layer to the
hidden layer and connecting the hidden layer to the output layer
respectively. These linearly transform the layers’ inputs before applying
some element-wise non-linearity o(-). Denote by b the biases by which we
shift the input of the non-linearity. We assume the model to output D
dimensional vectors while its input i1s Q dimensional vectors, with K hidden
units. Thus W1 is a QO X Kmatrix, W2 1s a K X D matrix, and bisa K
dimensional vector. A standard NN model would

}Af — O'(le -+ b)WQ




* Dropout is applied by sampling two binary vectors z1, z2 of dimensions Q
and K respectively. The elements of the vectors are distributed according to
a Bernoulli distribution with some parameter

pze{ovl} 2:172

214 ~ Bernoulli(p;)

2o ~ Bernoulli(ps)

* Given an input %, (1 — pl) proportion of the elements of the input are set to
ZETO0.

* The output with dropout can be expressed as

}Af — O‘(X(lel) 1 b)(ZZWQ)
Z, = diag(z1) Zo = diag(zs)




I.oss function

* Loss 1n regression networks

(4
* Loss 1n classification networks Cyp, E _1 . D
exp(ynd) 1 A
Pnd = = g e
: > €TP(Yna) N J Pren

* With L2 regularization, the total loss is

gdropaut = )\1 Wl ’ )\2 W2 ’ )\3 b °




Gaussian process

flX ~ GP(0, K(X, X))

YIf ~ N(F, ~Ty)

-

* To model the data we have to choose a covariance function K(X1, X2) for the
Gaussian distribution. This function defines the (scalar) similarity between
every pair of input points K(x1, xj ).

* Gilven a finite dataset of size N this function induces an N X N covariance
matrix which we will denote K := K(X, X).




Variational Inference

* The output probability distribution on some unseen test data

p(y*|x*, X,Y) = /p(y*|x*,w)p(w|X,Y)dw

* condition the model on a finite set of random variables

v like the weights of the model.

* The distribution p(w | X, Y) cannot usually be evaluated analytically. Instead
we define an approximating variational distribution g(w)




