E9: 309 Advanced Deep Learning 7-10-2020

Instructor: Sriram Ganapathy sriramg@iisc.ac.in

Teaching Assistant : Jaswanth Reddy jaswanthk@iisc.ac.in

Schedule - MW - 330-5pm (Microsoft Teams) http://leap.ee.iisc.ac.in/sriram/teaching/ADL2020/

Recap of deep learning

Some notations

 $* \mathbf{x} \in \mathbf{R}^{D}$ - input data.

 $* \mathcal{Y} \in \mathcal{R}^{\mathcal{C}}$ - neural network targets.

 $* \hat{y} \in B^C$ - model outputs.

$*e, h \in \mathbb{R}^d$ - hidden model representations or embeddings.

* 🖯 - collection of learnable parameters in the model.

 $* E(y, \hat{y})$ - error function used in the model training.

* $\{x_1, ..., x_N, y_1, ..., y_N\}$ - labeled training data

 $*q = \{1...Q\}$ - iteration index.

 $* t = \{1...T\}$ - discrete time index.

 $*^{l} = \{1...L\}$ - layer index

* - learning rate (hyper-parameter)

* N_b - mini-batch size and B is the number of mini-batches.

* Training data, validation data, test data.

* Model training data - used for parameter learning.

* Validation data - used for hyper-parameter tuning (cross validation CV).

E9:309 Advanced Deep Learning

Unseen Test Data

Evaluation data

Feedforward networks

* Dense connections between the input and output - also called fully connected network.

(randomly)

for $q = \{1...Q\}$; for $b = \{1...B\}$; return $\Theta^* = \Theta^{Q,B}$

E9:309 Advanced Deep Learning

* Stochastic gradient descent (SGD) - Initialize the model parameters $\Theta^{0,0}$

Learning in feedforward networks

- * Learning with momentum accelerate the learning by adding a component of the previous gradient computation. * RMSprop $\eta' = \frac{\eta'}{RMS(g)}$
- * Adam adaptive moment estimation
 - combines momentum and RMSprop.
 - empirically shown to be effective in many applications.

Reading assignment - Overview of gradient descent algorithms https://arxiv.org/pdf/1609.04747.pdf

Normalization

Batch Normalization

Reading assignment - How does batchnorm help optimization https://arxiv.org/pdf/1805.11604.pdf

Convolutional neural networks * Replacing affine transformations with convolutional operations $H(m,n) = X * W(m,n) = \sum X(m+i,n+j)W(i,j)$

* Usually used with max-pooling based sub-sampling

Module - I Visual and Time Series Modeling

- * Learn from ordered pairs of \mathcal{I}, \mathcal{Y}
 - ✓ All the data samples are treated independently.
 - ***** Data are shuffled before mini-batch formation
- * If the input data and output labels are time-series data x(t), y(t)
 - DNNs/CNNs may fail to model the correlation of the data across the time
 - Question how can we build models that capture the time evolution of the data and the labels.

* An interesting subset of this problem is where the input alone is a time series x(t), y or have different indices x(t), y(u)

- * Examples
 - ✓ Text sequences Speech and audio Video sequences

First order recurrence - hidden layer

* Making the hidden layer a function of the previous outputs from the hidden layer along with the input

h(t) = f(h(t-1), x(t)) $\boldsymbol{x}(t)$

First order recurrence - output layer

* Making the hidden layer a function of the previous outputs from the hidden layer along with the input

 $\boldsymbol{x}(t)$

E9:309 Advanced Deep Learning

$h(t) = f(\hat{y}(t-1), x(t))$

* Learning in recurrence networks: Back-propagation in time.

* Unsupervised Learning: Issues with a networks

E9:309 Advanced Deep Learning

* Unsupervised Learning: Issues with forgetting and long-short-term memory

http://phdcomics.com/

E9:309 Advanced Deep Learning

www.phdcomics.com

