

Housekeeping

- * Filling the google form in the webpage
 - Contents will be made available to the folks in the creditors mailing lists.
 - ✓ Announcements regarding evaluations and projects will be shared only with creditors as well as video links.
 - * Teams channel interaction and TA session for creditors only.
- * Online registration portal from <u>academics.iisc.ac.in</u>
 - √ Your research/faculty advisor may need to approve also before the deadline (Oct. 20th?)

Recap of previous class

Some notations

- $*x \in \mathcal{R}^D$ input data.
- $* y \in \mathbb{R}^C$ neural network targets.
- $*\hat{y} \in \mathcal{B}^C$ model outputs.

- * $e,h\in\mathcal{R}^d$ hidden model representations or embeddings.
- * collection of learnable parameters in the model.
- $*E(y,\hat{y})$ error function used in the model training.

Some notations

- $*\left\{oldsymbol{x}_{1},...,oldsymbol{x}_{N},oldsymbol{y}_{1},...,oldsymbol{y}_{N}
 ight\}$ labeled training data
- $*q = \{1...Q\}$ iteration index.
- $*t = \{1...T\}$ discrete time index.
- $*l = \{1...L\}$ layer index
- * 7 learning rate (hyper-parameter)
- $*N_b$ mini-batch size and B is the number of mini-batches.

Module - I Visual and Time Series Modeling

First order recurrence - hidden layer

* Making the hidden layer a function of the previous outputs from the hidden layer along with the input

$$h(t) = f(h(t-1), x(t))$$
 $x(t)$
 $\hat{y}(t)$
 $h(t-1)$

* Error functions are computed at every time-instant

* Total error
$$E = \sum_{t} E(y(t), \hat{y}(t))$$

✓ Output activations

$$\frac{\partial E}{\partial a^2(t)} = \hat{\mathbf{y}}(t) - \mathbf{y}(t) \quad for \quad t = 1 \dots T$$

Hidden activations at last instant T

$$\frac{\partial E}{\partial \boldsymbol{h}^{1}(T)} = (\boldsymbol{W}^{2})^{T} \frac{\partial E}{\partial \boldsymbol{a}^{2}(T)}$$

✓ Hidden activations for previous instances t = T-1,...

$$\frac{\partial E}{\partial \boldsymbol{h}^{1}(t)} = (\boldsymbol{W}^{2})^{T} \frac{\partial E}{\partial \boldsymbol{a}^{2}(t)} + \frac{\partial \boldsymbol{h}^{1}(t+1)}{\partial \boldsymbol{h}^{1}(t)} \frac{\partial E}{\partial \boldsymbol{h}^{1}(t+1)}$$

$$egin{aligned} m{a}^1(t) &= m{W}^1m{x}(t) + m{U}^1m{h}^1(t-1) + b^1 \ m{h}^1(t) &= tanh(m{a}^1(t)) \ m{a}^2(t) &= m{W}^2m{h}^1(t) + b^2 \ m{\hat{y}}(t) &= S(m{a}^2(t)) \end{aligned}$$

✓ Hidden activations for previous instances t = T-1,...1

$$egin{aligned} m{a}^1(t) &= m{W}^1 m{x}(t) + m{U}^1 m{h}^1(t-1) + b^1 \ m{h}^1(t) &= tanh(m{a}^1(t)) \ m{a}^2(t) &= m{W}^2 m{h}^1(t) + b^2 \ m{\hat{y}}(t) &= S(m{a}^2(t)) \end{aligned}$$

$$\frac{\partial E}{\partial \boldsymbol{h}^{1}(t)} = (\boldsymbol{W}^{2})^{T} \frac{\partial E}{\partial \boldsymbol{a}^{2}(t)} + \frac{\partial \boldsymbol{h}^{1}(t+1)}{\partial \boldsymbol{h}^{1}(t)} \frac{\partial E}{\partial \boldsymbol{h}^{1}(t+1)}$$

$$\frac{\partial E}{\partial \boldsymbol{h}^{1}(t)} = (\boldsymbol{W}^{2})^{T} \frac{\partial E}{\partial \boldsymbol{a}^{2}(t)} + (\boldsymbol{U}^{1})^{T} diag(1 - (\boldsymbol{h}^{1}(t+1)).^{2}) \frac{\partial E}{\partial \boldsymbol{h}^{1}(t+1)}$$

- ✓ Here, the term $diag(1 h(t + 1)^2)$ comes from the derivative of tanh
- ✓ and the notation .² denotes element wise operation of squaring.

✓ The derivatives of the output weights.

$$\frac{\partial E}{\partial \mathbf{W}^2} = \sum_{t} \frac{\partial E}{\partial \mathbf{a}^2(t)} (\mathbf{h}^1(t))^T$$
$$\frac{\partial E}{\partial \mathbf{b}^2} = \sum_{t} \frac{\partial E}{\partial \mathbf{a}^2(t)}$$

$$m{a}^1(t) = m{W}^1m{x}(t) + m{U}^1m{h}^1(t-1) + b^1 \ m{h}^1(t) = tanh(m{a}^1(t)) \ m{a}^2(t) = m{W}^2m{h}^1(t) + b^2 \ m{\hat{y}}(t) = S(m{a}^2(t))$$

√ Transferring derivatives to the first layer

$$\frac{\partial E}{\partial \boldsymbol{a}^{1}(t)} = diag(1 - \boldsymbol{h}(t).^{2}) \frac{\partial E}{\partial \boldsymbol{h}^{1}(t)}$$

✓ The derivatives of the first layer weights.

$$\frac{\partial E}{\partial \boldsymbol{W}^{1}} = \sum_{t} \frac{\partial E}{\partial \boldsymbol{a}^{1}(t)} (\boldsymbol{x}^{1}(t))^{T}$$

$$\frac{\partial E}{\partial \boldsymbol{U}^{1}} = \sum_{t} \frac{\partial E}{\partial \boldsymbol{a}^{1}(t)} (\boldsymbol{h}^{1}(t))^{T}$$

$$\frac{\partial E}{\partial \boldsymbol{b}^{1}} = \sum_{t} \frac{\partial E}{\partial \boldsymbol{a}^{1}(t)}$$

$$egin{aligned} m{a}^1(t) &= m{W}^1m{x}(t) + m{U}^1m{h}^1(t-1) + b^1 \ m{h}^1(t) &= tanh(m{a}^1(t)) \ m{a}^2(t) &= m{W}^2m{h}^1(t) + b^2 \ m{\hat{y}}(t) &= S(m{a}^2(t)) \end{aligned}$$

* Key equation in the backward direction

$$\frac{\partial E}{\partial \boldsymbol{h}^{1}(t)} = (\boldsymbol{W}^{2})^{T} \frac{\partial E}{\partial \boldsymbol{a}^{2}(t)} + (\boldsymbol{U}^{1})^{T} diag(1 - (\boldsymbol{h}^{1}(t+1)).^{2}) \frac{\partial E}{\partial \boldsymbol{h}^{1}(t+1)}$$

- * When the model incorporates a recurrence in the forward direction.
 - Gradients incorporate a recurrence in the backward direction.

Back propagation through time

Long-term dependency issues

Long-term dependency issues

√ Gradients tend to vanish or explode

✓ Intial frames may not have impact in the final predictions.

Long short term memory (LSTM) idea

Modeling questions

- * How can we make adaptable gates with neural networks
 - → How can we make gates dependent on the data itself.
 - ✓ Gates can be implemented as neural layers with sigmoidal outputs?
 - * Sigmoids can approximate 0-1 functions
 - Modulate the gate output with inputs, hidden layer outputs or outputs

Long-short term memory - idea

Long short term memory - idea

* Forget gate

$$a_{\phi}^{t} = \sum_{i=1}^{I} w_{i\phi} x_{i}^{t} + \sum_{h=1}^{H} w_{h\phi} b_{h}^{t-1}$$

$$b_{\phi}^{t} = f(a_{\phi}^{t})$$

Long short term memory - idea

* Input gate

$$a_{\iota}^{t} = \sum_{i=1}^{I} w_{i\iota} x_{i}^{t} + \sum_{h=1}^{H} w_{h\iota} b_{h}^{t-1}$$

$$b_{\iota}^{t} = f(a_{\iota}^{t})$$

Long-short term memory - idea

* Cell state

$$a_{c}^{t} = \sum_{i=1}^{I} w_{ic} x_{i}^{t} + \sum_{h=1}^{H} w_{hc} b_{h}^{t-1}$$

$$s_{c}^{t} = b_{\phi}^{t} s_{c}^{t-1} + b_{\iota}^{t} g(a_{c}^{t})$$

Long-short term memory - idea

* Output gate

$$a_{\omega}^{t} = \sum_{i=1}^{I} w_{i\omega} x_{i}^{t} + \sum_{h=1}^{H} w_{h\omega} b_{h}^{t-1}$$

$$b_{\omega}^{t} = f(a_{\omega}^{t})$$

Long short-term memory - idea

Long-short term memory and GRUs

