

Housekeeping

- * Filling the google form in the webpage
 - Contents will be made available to the folks in the creditors mailing lists.
 - ✓ Announcements regarding evaluations and projects will be shared only with creditors as well as video links.
 - * Teams channel interaction and TA session for creditors only.
- * Online registration portal from <u>academics.iisc.ac.in</u>
 - √ Your research/faculty advisor may need to approve also before the deadline (Oct. 20th?)

Recap of previous class

Some notations

- $*x \in \mathcal{R}^D$ input data.
- $* y \in \mathbb{R}^C$ neural network targets.
- $*\hat{y} \in \mathcal{B}^C$ model outputs.

- * $e,h\in\mathcal{R}^d$ hidden model representations or embeddings.
- * collection of learnable parameters in the model.
- $*E(y,\hat{y})$ error function used in the model training.

Some notations

- $*\left\{oldsymbol{x}_{1},...,oldsymbol{x}_{N},oldsymbol{y}_{1},...,oldsymbol{y}_{N}
 ight\}$ labeled training data
- $*q = \{1...Q\}$ iteration index.
- $*t = \{1...T\}$ discrete time index.
- $*l = \{1...L\}$ layer index
- * 7 learning rate (hyper-parameter)
- $*N_b$ mini-batch size and B is the number of mini-batches.

Long-term dependency issues

Long short term memory (LSTM) idea

State of affairs

- * Recurrent networks
 - → First order recurrence
 - → Back propagation in RNNs
- * Issues with long-term dependency
 - → Gates as neural networks
 - → LSTM and GRUs

Reading Assignment - "A review of recurrent neural networks - LSTM cells and Network Architectures" https://www.mitpressjournals.org/doi/pdfplus/10.1162/neco_a_01199

Other network architectures

* Multiple input multiple output

Bidirectional RNNs

* Multiple input multiple output

Bidirectional RNNs

- * Forward and backward recurrence variables are summed.
- * Can we implemented using LSTMS called BLSTMs
- * Backpropagation
 - Gradients for the forward recurrence will have a backward relationship
 - Gradients for the backward recurrence will have a forward relationship
- * Commonly used in offline processing of sequence data
 - → Mostly improves over the forward LSTM/RNN models.

Other network architectures

* Multiple input single output (seq2vec)

* Applications like topic summarization of text, speaker identification of speech.

Other network architectures

* Single input multiple output

* Image captioning.

* Multiple input multiple output (with different label index) - Seq2seq

$$x(1)...x(T)$$
 $y(1)...y(S)$

- * Applications
 - ✓ Machine translation.
 - ✓ Speech recognition.
 - √ Video captioning.

* Multiple input multiple output (with different label index) - Seq2seq

* Multiple input multiple output (with different label index) - Seq2seq

* Encoder — convert sequence $\mathbf{x} = \{\mathbf{x}(1), ..., \mathbf{x}(T)\}$ to vector

$$\mathbf{h}(t) = f(\mathbf{h}(t-1), \mathbf{x}(t))$$

$$\mathbf{e} = f'(\mathbf{h}_1, ..., \mathbf{h}_T)$$

- * The encoder can have multiple deep RNN layers.
- * For simplicity

$$\mathbf{e} = \mathbf{h}_T$$

- * Encoder convert sequence $\mathbf{x} = \{\mathbf{x}(1), ..., \mathbf{x}(T)\}$ to vector e
- * Decoder converts the vector embedding from the encoder to the output sequence $\hat{y} = \{\hat{y}(1), ..., \hat{y}(S)\}$ with different label index.

$$p(\hat{\mathbf{y}}) = \prod_{s=1}^{S} p(\hat{\mathbf{y}}(s)|\hat{\mathbf{y}}(1), ..., \hat{\mathbf{y}}(s-1))$$

* RNN decoder assumption

$$p(\hat{\mathbf{y}}(s)|\hat{\mathbf{y}}(1),...,\hat{\mathbf{y}}(s-1)) = p(\hat{\mathbf{y}}(s)|\hat{\mathbf{y}}(s-1),\mathbf{e}) = softmax(\mathbf{V}\hat{\mathbf{y}}(s-1) + \mathbf{Rc}(s-1) + \mathbf{Te} + \mathbf{d})$$
$$\mathbf{c}(s) = f(\mathbf{c}(s-1),\mathbf{e})$$

* The decoder can also have multiple layers of deep RNNs before softmax.

- * Encoder convert sequences to vectors
- * Decoder converts the vector embedding from the encoder to the output sequence with different label index.
 - ✓ Start and end label are also encoded as output vector indices.
 - * Enable the starting and ending of the output sequence.
- * Assumption
 - ✓ The entire input sequence can be represented as a single vector e
 - * May not be able to perform this efficiently for long sequences.

* Modification of encoder-decoder model

$$p(\hat{\mathbf{y}}(s)|\hat{\mathbf{y}}(1),...,\hat{\mathbf{y}}(s-1)) = p(\hat{\mathbf{y}}(s)|\hat{\mathbf{y}}(s-1),\mathbf{e}) = softmax(\mathbf{V}\hat{\mathbf{y}}(s-1) + \mathbf{Rc}(s-1) + \mathbf{Te} + \mathbf{d})$$

$$p(\hat{\mathbf{y}}(s)|\hat{\mathbf{y}}(1),...,\hat{\mathbf{y}}(s-1)) = p(\hat{\mathbf{y}}(s)|\hat{\mathbf{y}}(s-1),\mathbf{e}(s)) = softmax(\mathbf{V}\hat{\mathbf{y}}(s-1) + \mathbf{Rc}(s-1) + \mathbf{Te}(s) + \mathbf{d})$$

* where

$$\mathbf{e}(s) = \sum_{t=1}^{T} \alpha(s, t) \mathbf{h}(t)$$

* Here lpha(s,t) captures the contribution of input at time t with output at time s

- * Obtaining the relative contribution $\alpha(s,t)$
 - ✓ Implementing this automatically using network-in-network

Attention network

$$\mathbf{c}(s-1)$$
 $\mathbf{h}(t)$

$$\hat{\alpha}(s,t) = \mathbf{A}[\mathbf{c}(s-1);\mathbf{h}(t)]$$

$$\alpha(s,t) = S(\hat{\alpha}(s,t)) = \frac{exp(\hat{\alpha}(s,t))}{\sum_{t'} exp(\hat{\alpha}(s,t'))}$$

 \checkmark The values $\alpha(s,t)$ are called attention weights.

Analysis of attention networks

- * Attention weights $\alpha(s,t)$
 - √ Probability of linking (attending) to input at t for generating output at s
 - ✓ Useful in analyzing the internal structure of the encoder-decoder model

Visualizing the attention weights

Reading Assignment - "Neural Machine Translation by Jointly Learning to Align and Translate" https://arxiv.org/pdf/1409.0473.pdf

Analysis of attention networks

- * Attention weights $\alpha(s,t)$
 - ✓ Probability of linking (attending) to input at t for generating output at s
 - ✓ Useful in analyzing the internal structure of the encoder-decoder model

Visualizing the attention weights

Reading Assignment - "Neural Machine Translation by Jointly Learning to Align and Translate" https://arxiv.org/pdf/1409.0473.pdf

Visualizing attention

