Deep Learning: Theory and Practice

Recurrent Neural Networks

30-04-2019

Introduction

- * The standard DNN/CNN paradigms
 - * (x,y) ordered pair of data vectors/images (x) and target (
- Moving to sequence data
- Moving to sequence data x(1) x(2) x(3) x(4)* (x(t),y(t)) where this could be sequence to sequence mapping task. target(1) (2) (3) (4)
 - (x(t)) where this could be a sequence to vector mapping task.

Difference between CNNs/DNNs

* (x(t),y(t)) where this could be sequence to sequence mapping task.
torget (1) torget (2)

Introduction

* Input features / output targets are correlated in time.

(2)

- Unlike standard models where each pair is independent.
- Need to model dependencies in the sequence over time.

Chap 10 of Deep Learning Book Introduction to Recurrent Networks

Recurrent Networks

 $\left(\nabla_{\mathbf{o}^{(t)}}L\right)_{i} = \frac{\partial L}{\partial o_{i}^{(t)}} = \frac{\partial L}{\partial L^{(t)}} \frac{\partial L^{(t)}}{\partial o_{i}^{(t)}} = \hat{y}_{i}^{(t)} - \mathbf{1}_{i,y^{(t)}}$

(BPTT) Back Propagation Through Time

Back Propagation Through Time

Standard Recurrent Networks

Other Recurrent Networks

Teacher Forcing Networks

Recurrent Networks

Single Input Multiple Output

> Autoregressive Models

Vanishing/Exploding Gradients

 Initial frames may not contribute to gradient computations or may contribute too much.

Long-Short Term Memory

LSTM Cell

Long Short Term Memory Networks

Gated Recurrent Units (GRU)

 $z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$ $r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$ $\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$ $h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$

It combines the forget and input into a single update gate. It also merges the cell state and hidden state. This is simpler than LSTM. There are many other variants too.

X,*: element-wise multiply

 Certain regions of the audio have more importance than the rest for the task at hand.

Encoder - Decoder Networks with Attention

Attention Models

Attention - Speech Example

From our lab [part of ICASSP 2019 paper].

Table 1: LRE17 training set : target languages, language clusters and total number of hours.

Cluster	Target Languages	Hours
Arabic	Egyptian Arabic (ara-arz)	190.9
	Iraqi Arabic (ara-acm)	130.8
	Levantine Arabic (ara-apc)	440.7
	Maghrebi Arabic (ara-ary)	81.8
Chinese	Mandarin (zho-cmn)	379.4
	Min Nan (zho-nan)	13.3
English	British English (eng-gbr)	4.8
	General American English (eng-usg)	327.7
Slavic	Polish (qsl-pol)	59.3
	Russian (qsl-rus)	69.5
Iberian	Caribbean Spanish (spa-car)	166.3
	European Spanish (spa-eur)	24.7
	Latin American Continental Spanish (spa-lac)	175.9
	Brazilian Portuguese (por-brz)	4.1

End-to-end model using GRUs and Attention

Proposed End-to-End Language Recognition Model

Proposed End-to-End Language Recognition Model

Proposed End-to-End Language Recognition Model

- State-of-art models use the input sequence directly.
- We proposed the attention model Attention weighs the importance of each short-term segment feature for the task.

Attention Weight

0-3s O...One muscle at all, it was terrible
3s-4s: ah ah
4s - 9s I couldn't scream, I couldn't shout, I
couldn't even move my arms up, or my legs
9s -11s I was trying me hardest, I was really
really panicking.

Bharat Padi, et al. "End-to-end language recognition using hierarchical gated recurrent networks", under review 2018.

Table 3. Approximate computational time in seconds for ten 30sec eval files using a single CPU. Machine Specification: 32 CPU, 8 core, 2 thread Intel x86_64 machine with 16 GB Nvidia Quadro P5000 GPU cards.

	ivec. [19]	LSTM [16]	HGRU
CPU	12	51	8
GPU	12	11.5	1.5

Table 4. LID accuracy in % for additional experiments with multiple speakers speaking the same language and the experiments without any SAD information.

Cond.	i-vec. [19]	HGRU
Multi-Speaker	60.6	67.7
Without SAD information	49.7	52.7