
E9 205 – Machine Learning for Signal Processing

Homework # 1

Due date: Sept. 11, 2017 (12:00 noon).

Analytical in person and coding part via GitHub
Assignment should be solved individually without consent.

September 1, 2017

1. Induction in PCA - We have proved that in order to maximize the variance of 1 di-
mensional projection y = wTx of D dimensional data x, the solution is given by w = u1,
where u1 is the eigen vector corresponding to the largest eigen value of sample covariance
matrix S = 1

N

∑N
i=1

(x− µ)(x− µ)T and µ denotes the sample mean.

Let us suppose that the variance of M dimensional projection yM = W T
Mx is maximized

by W = [u1 u2 .. uM ] where u1...uM are the orthonormal eigen vectors of S correspond-
ing to the M largest eigen values. Prove the induction that variance of M+1 dimensional
projection yM+1 = W T

M+1x is maximized by choosing WM+1 = [WM uM+1]. With
this proof, given it is true for M = 1, we have PCA solution for any M . (Points 10)

2. Prove the following two matrix derivative properties for square symmetric matrices A,B,

∂

∂A
log(|A|) = 2A−1 − diag(A−1)

∂

∂A
tr(AB) = 2B− diag(B)

(Points 15)

3. Fisherfaces - Sagar is a data scientist who analyzes face images for detecting emotions.
In his course, he has leant about LDA and wants to use it to reduce the dimensionality
before training a classifier. However, he is faced with a situation where he has N face
images each of dimension D with N << D. As he knows to apply PCA for high dimen-
sional data, he uses whitening to reduce the dimensionality to d < N . The whitenning
process can be described as,

y = Λ−

1

2W T (x− µ)

where x is the input D dimensional image, µ is the sample mean of input images, W is the
PCA projection matrix of dimension D×d, Λ is d×d diagonal matrix containing d largest
eigenvalues of sample covariance and y is the whitenned output of dimension d. Given a
set of N data points, x1,x2, ...,xN and the corresponding class labels t1, t2, ..., tN , (where
tn = {1, 2, ...,K}, is one of the K-class labels), he tries to learn Fisher LDA projection
on the whittened outputs, y1,y2, ...,yN . Here, let µ denote the sample mean for the N

samples.



(a) As a first step, Sagar tries to find the total covariance (sample covarince) of whitenned
outputs y, given as,

S
y
T =

1

N

N∑

n=1

yny
T
n

Show that for this case, Sy
T = I where I is the d× d identity matrix. (Points 10)

(b) Assuming that Sy
w is invertible, show that the first LDA projection vector w is given

by the eigenvector of Sy
w with minimum magnitude of eigen value. (Points 15)

4. Fischer faces - Data is posted here
http://leap.ee.iisc.ac.in/sriram/teaching/MLSP/assignments/HW2/Data.tar.gz

15 subject faces with happy/sad emotion are provided in the data. Each image is of
100x100 matrix. Perform PCA on to reduce the dimension from 10000 to K (using
PCA for high dimensional data) and then perform LDA to one dimension. Plot the one
dimension features for each image. Select the optimum threshold to classify the emotion
and report the classification accuracy on the test data. What is the best choice of K
which gives the maximum separability ? (Points 25)

5. Speech spectrogram - We have clean and noisy speech files here
http://leap.ee.iisc.ac.in/sriram/teaching/MLSP/assignments/HW1/speech.zip
The files are in wav format sampled at 16kHz. Compute the spectrogram of clean and
noisy files (use 25 ms Hamming windows with a shift of 10 ms for spectrogram computation
with 256 point magnitude FFT.). Thus, a speech file of 1s will have a spectrogram of size
256× 98.

Now, for any given pair of clean and noisy spectrogram, measure the average noise value in
dB which is computed as log of average of ratio of noisy spectrogram to clean spectrogram
in each time-frequency bin. Now, divide the files into two halves - training and testing.
Using the training set of files, compute a PCA basis of 5 dimensions from the clean speech
using half the files. If you project the clean speech and noisy speech on this basis (for
all files in training and test set) and reconstruct the spectrogram back, does the average
noise value (computed as before from the reconstrructed spectrogram) reduce for each file
? How much is the change in noise value before and after PCA for the files in the training
set versus the test set. (Points 25)


