
E9 205 – Machine Learning for Signal Processing

Homework # 5

Due date: Nov. 24, 2017

End of the day for coding part and submitting in class on Nov 24 for analytical part.

Coding assignment submitted to e9205mlsp2017 aT gmail doT com

November 15, 2017

1. Implementing BackPropagation

leap.ee.iisc.ac.in/sriram/teaching/MLSP 17/assignments/HW4/Data.tar.gz
The above dataset has training/test subject faces with happy/sad emotion are provided in
the data. Each image is of 100× 100 matrix. Perform PCA to reduce the dimension from
10000 to K = 12. Implement a 2 hidden layer deep neural network (each layer containing
10 neurons) to classify the happy/sad classes. Use the cross entropy error function with
softmax output activations and ReLU hidden layer activations. Perform 20 iterations of
back propagation and plot the error on training data as a function of the iteration. What
is the test accuracy for this case and how does it change if the number of hiddent neurons
is increased to 15. (Points 30)

2. MNIST data - Download the dataset of hand-written digits
http : //yann.lecun.com/exdb/mnist/
containing 10 classes. [Reduce the number of samples in training data if your computing
powers are limited as required by random subsampling]. The Keras package is needed for
the rest of the question https : //pypi.python.org/pypi/Keras

(a) Implementing DNNs - Use the Keras package to implement a DNN model with 2 and
3 hidden layers. Each hidden layer contains 512 neurons. What is the performance
on the test dataset for this classifier

(b) Implementing CNNs - Use the same package to implement a CNN model with one
layer of convolutions (kernel size of 3× 3 with a 2-D convolutional layer and having
128 filters) followed by two dense layers of 256 neurons. Compare the performance
of the CNN with the DNN.

(c) Provide your answers with analysis, plots for various choices of hidden layer dimen-
sions and filter sizes in the CNN.

(Points 40)

3. Neural Networks - Cost Function - Let us define a NN with softmax output layer
and {oi}

M
i=1 and {yi}

M
i=1 denote the input and targets to the NN. The task is classification

with hard targets y ∈ BC×1, where B denotes boolean variable (0 or 1), and C is the
number of classes. Note that every data point oi is associated with only one class label

ci where ci ∈ {1, 2, .., C} classes. The output of the network is denoted as vi where
vi = {v1i , v

2
i , .., v

C
i } ∈ RC×1 and 0 < vi < 1. The NN cost function can defined using

mean square error (MSE).

JMSE =
M
∑

i=1

||vi − yi||
2

Show that the MSE is bounded in the following manner

M
∑

i=1

[

1− vcii
]2

≤ JMSE ≤ 2
M
∑

i=1

[

1− vcii
]2

(Points 15)

4. Learning of NN weights - Consider a quadratic error of the form

J = J0 +
1

2
(w −w

∗)TH(w −w
∗)

where w
∗ represents the minimum of the function and H represents the Hessian matrix

which is positive definite. Let the eigenvalues and eigenvectors of H be denoted by λj

and uj respectively for j = 1, .., n. The gradient descent based update of w is given by

w
t+1 = w

t − η
∂J

∂w

where t is the iteration index. If the weights w were initialized to w
0 = 0, then show

that after Q steps of gradient descent, the weights are given by

wQ
j = ([1− (1− ηλj)]

Q)w∗

j

where wj = w
T
uj . Show that as Q → ∞, wQ → w

∗ if |1− ηλj | < 1.

(Points 15)

