
E9 205 – Machine Learning For Signal Processing

Practice Exam
Date: Dec. 1, 2017

Instructions

1. This exam is open book. However, computers, mobile phones and other handheld devices
are not allowed.

2. Notation - bold symbols are vectors, capital bold symbols are matrices and regular symbols
are scalars.

3. Answer all questions.

4. Total Duration - 180 minutes

5. Total Marks - 100 points

Name - ................................

Dept. - ....................

SR Number - ....................



1. Text analysis - In document analyis, the number of co-occurences n(di, wj) of word wj

in a document di is obtained for all words j = 1, ..,M , and all the documents i = 1, .., N ,
where M is total number of words in the vocabulary and N is total number of documents.
The assumption in this analysis is that there is an underlying topic zk for k = 1, ..,K for
each of the document. The joint probability model in this case is,

P (di, wj) = P (di)P (wj |di) = P (di)
K
∑

k=1

P (wj |zk)P (zk|di)

This forms a generative model where a document is selected with probability P (di), a
topic is then selected with probability P (zk|di) and word is generated with a probability
P (wj |zk). The total log likelihood of the co-occurence model is given by,

L =
N
∑

i=1

M
∑

j=1

n(di, wj) log(P (di, wj))

=
N
∑

i=1

n(di)

[

P (di) +
M
∑

j=1

n(di, wj)

n(di)
log

{

K
∑

k=1

P (wj |zk)P (zk|di)
}

]

where n(di) =
∑M

j=1 n(di, wj) is the document length. Formulate and solve for the
unknown probability mass functions P (wj |zk) and P (zk|di) using the EM algorithm.
(Points 20)



.



2. Convolutional Networks - A CNN realizes a convolution operation of input image X of
size (U, V ) with a set of weights (filters) Wk for k = 1, ..,K where K denotes the number
of filters in a CNN layer. The convolution operation is given by,

Yk = X ∗Wk

Yk(p, q) =
S−1
∑

i=0

T−1
∑

j=0

X(p+ i, q + j)Wk(i, j)

where (S, T ) is the size of the filter Wk, p ranges from 0, 1, ..., U − S and q ranges from
0, 1, ..., V − T . Note that the output image Yk is of size (U − S + 1, V − T + 1). Let J
denote the cost function used in CNN training. Assume that the partial derivative w.r.t.
to output of filter has been computed as ∂J

∂Yk . Prove the following gradient update rule
for filter learning

∂J

∂Wk
= X ∗

∂J

∂Yk

(Points 20)





3. Restricted Boltzmann Machine - A modified Gaussian RBM is defined using visible
units v, hidden units h with the energy function and the joint probability density function
given by,

E(v,h) = 0.5
∑

i∈visible

|(vi − bi)|2

σ2
i

− 0.5
∑

j∈hidden

|(hj − cj)|
2

σ2
j

−
∑

i

∑

j

vihj

σiσj
wij

P (v,h) =
e−E(v,h)

Z

where Z is a normalization constant and vi, bi are the ith dimension of visible layer v

and bias vector b respectively and hj , cj are the jth dimension of hidden layer h and
bias vector c respectively. The parameters σi, σj are scaling constants of the visible and
hidden layer respectively. For this RBM definition,

(a) Show that conditional probability density function p(vi|h) is Gaussian. What are
the parameters of the Gaussian distribution. (Points 10)



(b) Find the conditional probabilty density function of the hidden unit hj given the vis-
ible layer input v, i.e., p(hj |v). (Points 10)

4. Line Mixture Model A line mixture model is the problem of fitting a mixture of lines
on a 2-D dataset. Let zi = [xi yi]

T denote a set of 2-D data i = {1, .., N}. Each mixture
component in the LMM is defined using a line fk(xi) = akxi + bk, k = {1, ...,K}, where
K is the number of mixtures and ak, bk are the parameters of the line for the kth mixture
component. The pdf of zi is modeled as,

p(zi|λ) =
K
∑

k=1

αkN (yi; fk(xi), σ
2
k)

where σk is the variance of the k-th mixture component and the model parameters λ =
{ak, bk, σk}

K
k=1. Given a set of N data points,

(a) Write down the Q function which will allow the EM estimation of the λ.

(b) Find the iterative maximization steps for all the parameters in the model.

(Points 10)





5. MLSP Exam and grading - Prof. Sam is evaluating the final exam of his MLSP
course which was taken by N students. The exam had Q questions. From the answers
provided by students, he finds the assignment variable xnq where (xnq = 1) indicates that
the answer for student n and question q was correct and (xnq = 0) indicates answer for
student n and question q was incorrect. Here n ∈ {1, .., N} and q ∈ {1, .., Q}. Each
question is assigned a latent difficulty δq and each student is associated with a latent
ability αn. Prof. Sam uses a sigmoidal model for the conditional probability of the
assignment variable (xnq = 1) given the latent ability vector α = [α1, .., αN ]T and latent
difficulty vector δ = [δ1, ..., δQ]

T . Specifically,

p(xnq = 1|α, δ) = σ(αn − δq)

where σ is the sigmoidal nonlinearity function. He plans to estimate the deterministic
latent parameters in the model given the binary data matrix X of dimension N × Q

containing elements [xnq] (assuming that variables xnq are i.i.d.).

(a) Find the total data likelihood under the given model for the MLSP exam.

(b) How can Prof. Sam apply gradient descent to estimate the latent ability of students
αn and latent difficulty of questions δq which maximize the total log-likelihood ?

(Points 10)



6. Speech Enhancement - Let yt, t = 1 , ..., T denote clean speech signal which is observed
as zt = yt + vt, where vt is the noise. Let λs, λv denote the HMM-GMM for clean
speech and noise signal respectively. Let q = q1, q2, ...qT denotes the state sequence
of λs and l = l1, l2, ...lT denotes the sequence of mixture component index of emission
probabilities p(yt|qt, λs). Each qt ∈ {1, ..., N} where N denotes the number of states in
λs and each lt ∈ {1, ...,M} where M denotes the number of mixture (all the states have
the same number of mixture components) in p(yt|qt, λs). The speech enhancement task
is to estimate the clean signal yt by maximizing p(y|z). Show that this can be achieved
by iteratively maximizing Φ(y,y′), where

Φ(y,y′) =
∑

q,l

p(q, l|y′) log p(q, l,y|z)

Are there any similarities with EM algorithm ? (Points 15)





7. Paired RBM

A paired RBM is one which has two visible layers v1, v2 each with dimension nv and two
hidden layers h1, h2 each with dimension nh. Assuming Bernoulli distributions for both
visible and hidden units, the energy function of a paired RBM is given by,

E[v1,v2,h1,h2] = −(h1)TMh2 − (h1)TWv1 − (h2)TWv2 − cTv1 − cTv2 − bTh1 − bTh2

where M,W,b, c are the parameters of the RBM. The probability density function of the
paired RBM is given as,

P [v1,v2,h1,h2] =
exp

(

− E[v1,v2,h1,h2]
)

Z

where Z is a normalization constant. For the paired RBM, show that,

P [v1,v2|h1,h2] =

nv
∏

i=1

p(v1i |h
1)

nv
∏

j=1

p(v2j |h
2)

(Points 5)


