E9 205 Machine Learning for Signal Processing

Dimensionality Reduction - I

24-08-2017

Instructor - Sriram Ganapathy (sriram@ee.iisc.ernet.in)

Teaching Assistant - Aravind Illa (aravindece77@gmail.com).

Principal Component Analysis

- * Reducing the data \mathbf{x}_n of dimension D to lower dimension M < D
- Projecting the data into subspace which preserves maximum data variance
 - * Maximize variance in projected space
- * Equivalent formulated as minimizing the error between the original and projected data points.

Minimum Error Formulation - PCA

Principal Component Analysis

* First *M* eigenvectors of data covariance matrix

$$S = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}}) (\mathbf{x}_n - \bar{\mathbf{x}})^T$$

Residual error from PCA

$$J = \sum_{i=M+1}^{D} \lambda_i$$

PCA

Handwritten digits used for PCA training...

PCA

PCA - Reconstruction

PCA - Reconstruction

Whitening the Data

