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l.inear Classifiers

How would you
classify this data?
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Linear Classifiers
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Any of these would
be fine..

..but which is best?
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Misclassified
to +1 class
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Linear Classifiers

e denotes +1

° denotes -1

Define the margin
of a linear classifier
as the width that
the boundary could
be increased by
before hitting a
datapoint.




Maximum Margin
X - |f - yest

1. Maximizing the margin is good
according to intuition

° denotes +1
° |2. Implies that only support vectors are

oacis important; other training examples are
ignorable.

° denotes -1

| 3. Empirically it works very very well.

Support Vectors .‘ e — ), TITTCOTI CIOOOIIICT
are those data i / y " with the, um,
points that the y o °  maximum margin.
:;Eiﬁ e 2 This is the simplest
kind of SVM
/Z,(Called an LSVM)

Linear SVM




Non-linear SVMs

Datasets that are linearly separable with some noise work
out great:

FURETY x
But what are we going to do if the dataset is just too hard?

O O =0 ——600-0 00 *—
0 X

How about... mapping data to a higher-dimensional
space:




Non-linear SVMs: Feature spaces

General idea: the original input space can always be
mapped to some higher-dimensional feature space where
the training set is separable:




The “Kernel Trick”

The linear classifier relies on dot product between vectors k(x;,x)=x;"x;

If every data point is mapped into high-dimensional space via some
transformation @: x — ¢(x), the dot product becomes:

k(xilxj): P(x;) TCP(X]')
A kernel function is some function that corresponds to an inner product in
some expanded feature space.
Example:
2-dimensional vectors x=[x; x,]; let k(xi,xj):(l + xiij)zl
Need to show that K(x;,%;:)= ¢ (x;) T (x;):

k(x;,%)=(1 + x;Tx;)?

= 1+ xilzx '12 + 2 xl’]x'l xizx]'2+ xizszZ lhy 2xi1x]-1 O le'zx]'z
= [1 xi12 \/_2 xilxiz xizz \/_2xi1 \/inZ]T []_ .x]'12 \/_2 xﬂx]z x]'zz \/_Z.x]] \[2x]2]

= O(x;) Tdp(x;), where ¢() = [1 x2 V2 x5x, x2 V2x; V2x)]



What Functions are Kernels?

For many functions k(x;,x;) checking that

k(xi,x]-): G (O) Tdp(x;) can be cumbersome.
Mercer’s theorem: Every semi-positive definite

symmetric function is a kernel

Semi-positive definite symmetric functions correspond
to a semi-positive definite symmetric Gram matrix:

K(Xq,X1) |K(X4,X2) |K(Xq,X3) K(X4,XN)
K(X2,X1) |K(X2,X2) |K(X2,X3) K(X2,XN)
K(Xn,Xq) |K(XnsX2)  [K(XN,X3) K(Xn,XN)




Examples of Kernel Functions

- Linear: k(x;,x;,)= x; Tx;

- Polynomial of power p: k(x;,x;)= (1+ x; Tx;)/

- Gaussian (radial-basis function network):

—||xs — x|

k(x;,X;) =exp —

- Sigmoid: k(x;,x;)= tanh(Box; Tx; + [31)



SVM Formulation

* (Goal - 1) Correctly classify all training data

A e e L T

tn(v;Tqb(xn +b)>1 :

2) Define the Margin
——ming, [tn(W! @(xs,) + b)]

3) Maximize the Margin

argmao{ i, (w790 + )]

« Equivalently written as
1
Argrmntiiy. b §||w||2 such that tn(WT¢(Xn) s b) el



Solving the Optimization Problem

Need to optimize a quadratic function subject to linear constraints.

Quadratic optimization problems are a well-known class of
mathematical programming problems, and many (rather intricate)
algorithms exist for solving them.

The solution involves constructing a dual problem where a Lagrange
multiplier a,, is associated with every constraint in the primary

problem:

The dual problem in this case is maximized

Find {@1,..,an} such that
N N

N
~ Z 1 Z Z
n=1

n=1 m=1

and Z afntn ) O/ a’?’L > O




Solving the Optimization Problem

The solution has the form:

N
T Z An@(Xn)
n=1

Each non-zero 7, indicates that corresponding x,, is a
support vector. Let S denote the set of support vectors.

b=y X )= Z kX Xe)

me.sS
And the classifying function will have the form:

)= Z ank(X,,X)+0b

nes



Solving the Optimization Problem

x, +x,—1
|
—(x] x, +x,-1<0
2
_ X3

.\‘l

The solution is x;=1/2 and x,=1/2.




Visualizing Gaussian Kernel SVM




Overlapping class boundaries

The classes are not linearly separable - Introducing slack
Variables Cn

Slack variables are non-negative ¢,, =~ 0

They are defined using

tny(xn) Z = C'n,

The upper bound on mis-classification
2 Gn

The cost function to be optimized in this case

C ;Cn + %WTW



SVM Formulation - overlapping classes

Formulation very similar to previous case except for
additional constraints

Dema=-C

Solved using the dual formulation - sequential minimal
optimization algorithm

Final classifier is based on the sign of

)= Z ank(Xp,X)+b

nesS



Overlapping class boundaries

C=100 C=1

C=0.15 C=0.1




