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Feature Extraction

+ Feature Extraction
* Using measured data to build desirable values.

+ Attributes of the data that are informative and non-
redundant.

+ Resilience to noise/ artifacts.

* Facilitating subsequent learning algorithm.




Feature Extraction

“ Representation Problem

Cartesian Coordinates Polar Coordinates
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Feature Extraction

Scope for this course

I. Feature Extraction in Text.
[I. Feature Extraction in Speech and Audio signals.

[TI. Feature Extraction for Images.
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T'ext Modeling - Introduction to NLP

+ Definitions
+ Documents, Corpora, Tokens (Terms)
« Term Frequency (TF)
# Collection Frequency (CF)
* Document Frequency (DF)
+ TF-IDF

* Bag of words model



Example [Manning and Schutze, 2006]

Word cf df
try 10422 | 8760
insurance | 10440 | 3997

» Figure 6.7 Collection frequency (cf) and document frequency (df) behave differ-
ently, as in this example from the Reuters collection.

term df; | 1df;
car 18,165 | 1.65
auto 6723 | 2.08
insurance | 19,241 | 1.62
best 25,235 | 1.5

» Figure 6.8 Example of idf values. Here we give the idf’s of terms with various
frequencies in the Reuters collection of 806,791 documents.

https:/ /nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf



Speech and Audio

* Speech/Audio - 1D signals

* (Generated by pressure variations producing regions
of high pressure and low pressure.

* Travels through a medium of propagation (like air,
water etc).

* Human sensory organ - eardrum.
* Converting pressure variations to electrical signals.

E * Action mimicked by a microphone.
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Sound waves in a computer

* Analog continuous signal from the microphone
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# Discretized in time - sampling.

* Digitized in values - quantization.

E http:/ /mlsp.cs.cmu.edu/ courses/ fall2014 /lectures / slides / Class1.Introduction.pdf

Established



Why do we need time varying Fourier Transform
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* When the signal properties change in time

« DFT will only capture the average spectral character

* Short-window analysis can indicate the change in
spectrum.



Summary of STE'T Properties
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http://en.wikipedia.org/wiki/Window_function



Narrowband versus Wideband

Short windows - poor frequency resolution - wideband spectrogram

Long windows - poor time resolution - narrowband spectrogram

narrowband wideband
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Narrowband versus Wideband

= Can Illustrate time-frequency tradeoff
on the time-frequency plane:

T z disks show ‘blurring’

ol due to window length;

oo ' ¢ “ area of disk is constant
| — Uncertainty principle:
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= Alternate tilings
of time-freq:

Dan Ellis, “STFT Tutorial”
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Dan Ellis, “STFT Tutorial”

Spectrogram of Real Sounds
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Narrowband versus Wideband
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Dan Ellis, “STFT Tutorial”



