
E9 205 – Machine Learning For Signal Processing

Practice for Final Exam 2019
Date: Nov. 25, 2019

Instructions

1. This exam is open book. However, computers, mobile phones and other handheld devices
are not allowed.

2. Notation - bold symbols are vectors, capital bold symbols are matrices and regular symbols
are scalars.

3. Answer all questions.

4. Total Duration - 180 minutes

5. Total Marks - 100 points

Name - ................................

Dept. - ....................

SR Number - ....................



1. Aarush is doing a term project on developing a new dimensionality reduction method
that respects the Euclidean distance between data points. He has N data points X =
{x1, ....,xN} where xn ∈ RD. The data is also centered (Sample mean 1

N

∑
n xn = 0).

Using this dataset, he computes the pairwise distance matrix Dx where [Dx]ij = ||xi −
xj ||2. Let the Gram matrix be denoted as Gx where [Gx]ij = xT

i xj .

(a) The first result of his term project relates the distance matrix Dx with the Gram
matrix Gx. In particular, he shows that Gram entries [Gx]ij can be computed using
only the distance matrix Dx. How does he show this ? (Points 7)



(b) He attempts to perform dimensionality reduction of data points. LetY = {y1, ....,yN}
denote the reduced dimensional data point yn ∈ Rd and d < D derived using a linear
transform yn = ATxn where A is of size D × d. Let Gy denote the gram matrix
in the reduced dimensional space where [Gy]ij = yT

i yj . He proposes to find the
dimensionality reducing transform matrix A using the following criterion

A∗ = argminA||Gx −Gy||2F

Can you solve the optimization for A. (Points 9)



(c) Bhavana, who has taken the MLSP course, looks at Aarush’s solution and says that
his optimization result is related to PCA problem of reducing D dimensions to d
dimensions. Let B of size D × d denote the PCA transform matrix (BTxn is the
PCA projection vector). In particular, she establishes the following two connections,

i. The optimal error in Aarush’s model i.e., minA||Gx−Gy||2F is equal to the PCA
residual error.

ii. The solution of previous problem for A is also related to the PCA matrix B
using the design matrix X of size (D ×N).

How is she able to prove this to Aarush ?

(Points 9)



2. RBM and Gaussian Models - A Gaussian-Bernoulli RBM is defined using the energy
function over real visible nodes v and binary hidden nodes h as,

E[v,h] =
1

2
(v − a)T (v − a)− bTh+ hTWv

The associated p.d.f. is given by p(v.h) = 1
z exp{−E(v,h)}, where z is the normalization

constant. Let N denote the number of hidden nodes.

(a) If N = 0, show that the marginal distribution of v becomes a Gaussian distribution
with identity covariance. (Points 3)

(b) If pn(v) denotes the marginal distribution of visible nodes obtained for a RBM with
n hidden nodes, find a recursive relation between pn+1(v) and pn(v). (Points 9)

(c) Using the recursive relation check whether the marginal distribution of RBM with N
nodes resembles a GMM. How many mixture components are present in the marginal
distribution of visible nodes for N = 3. (Points 8)



3. Mixture Regression Model Let x[n], y[n] denote a vector time series of input ob-
servations and target outputs where each x[n],y[n] ∈ RD and n = 0, ..,M . A class of
regression models indexed by k are defined as

yj [n] = gk(xj [n]) + ϵk[n]

where yj [n] are the predicted time series, gk denotes a fixed transformation, ϵk[n] denotes
Gaussian noise with zero mean and variance σk and j is the index of dimension j =
1, ..., D. Let θk denote the set of parameters for the k th regression model containing the
parameters of gk and σk A conditional probability model for this regression is defined as
follows,

p(yj |xj ,θk) =
M∏
n=1

fk(yj [n]|xj [n],θk)

where fk is the appropriate density function. The mixture regression model is then defined
as,

p(yj |xj ,θ) =
K∑
k=1

wkp(yj |xj ,θk)

where θ consists of the parameters of all K regression models. Further, assume that
each dimension j = 1, ..., D is conditionally independent of each other (p(y|x,θ) =∏D

j=1 p(yj |xj ,θ)). If X,Y denotes the D ×M matrix of all the input and output vector
time series respectively, prove the following,



(a) Find the expression for the joint conditional probablility p(Y|X,θ) and log likelihood
function L(θ) for this model. (Points 5)

(b) Make your choice of latent variables (indicated by Z) to solve the EM algorithm for
this problem. Find the joint log likelihood (log[p(Y,Z|X,θ)]) and the expression for
the EM Q function in terms of current estimates of the model parameters θt .
(Points 5)



(c) For the p order polynomial regression, the function gk is defined as,

yj [n] =

p∑
q=0

βkq(xj [n])
q + ϵk

Let βk = [βk0, ..., βkp]
T denote the parameters of the regression model. Find the EM

algorithm for iteratively updating all the parameters of the model θk = {βk, σk} and
wk for k = 1, ...,K.

(Points 10)



4. Deep GMM A Gaussian distribution, a GMM and a deep GMM architecture is graphi-
cally shown above. All the layers realize linear connections and the tranformation is given
by the matrix indexed in the node. There is an additional bias term at each node that is
not shown in the graphical illustration.

For example, for figure (a), the marginal distribution is obtained by linear transformation
of a standard Gaussian, i.e., (p(x) = N (x,b,AAT ). For the figure in (b), the marginal
distribution is given by,

p(x) =
3∑

i=1

πi N (x,bi,AiA
T
i )

For figure (c), a deep GMM architecture is depicted and the probablity density is based
on the path chosen. Let ϕ denote the set of paths through the network with each path p
containing 3 steps (3 layer deep GMM). For example, {(1, 3), (2, 1), (3, 2)} represents one
possible path. Also, let bi,j denote the bias vector of layer i = 1, 2, 3 and node j (The
corresponding transform matrices Ai,j are shown in the figure. Let πp denote the path
probablity, then the marginal distribution in this case is given by,

p(x) =
∑
p∈ϕ

πp N (x,µp,ΣpΣ
T
p )

(a) Find the expression for µp,Σp for any choice of path. (Points 3)

(b) Formulate an iterative algorithm using backpropagation to update the model param-
eters that maximize the log-likelihood. Does it have similarities to EM algorithm.
(Points 17)





5. Skip connection DNN An image enhancement DNN is shown below for x,y ∈ RD.

The output units have a linear activation function and hidden units realize a ReLU ac-
tivation function. All the weight matrices are square matrices as well. For this DNN
architecture, derive the backpropagation update rule for all the parameters of the model
W1,W2,W3,b1,b2,b3. (Points 10)



6. If θ denotes the angle between two vectors ϕ(x) and ϕ(z), check whether cos(θ) is a valid
kernel. Justify your answer using either definition of valid kernels or using the kernel
rules.
(Points 5)


