E9 205 Machine Learning for Signal Processing

Supervised-Dimensionality-Reduction. Decision Theory Probability Distributions

26-08-2019

Advantages and Disadvantages of PCA

- Simple linear transform
 - Eigen decomposition of Data Covariance matrix is straight forward.
 - * PCA for high dimensional data ?
- Variance maximization may not be the ideal loss function in dimensionality reduction.
- * If the data contains discrete class labels, we can do better than PCA to maximize class separation.

Need for Supervised Dimensionality Reduction

Linear Discriminant Analysis

Without the Within Class Factor

Linear Discriminant Analysis

Find a linear transform $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ with a criterion which maximizes the class separation

• Maximize the between class distance in the projected space while minimizing the within class covariance

$$J = \frac{\mathbf{w}^T \boldsymbol{S}_b \mathbf{w}}{\mathbf{w}^T \boldsymbol{S}_w \mathbf{w}}$$

 $\boldsymbol{S}_b = \sum_{k=1}^{K} N_k (\boldsymbol{\mathbf{m}}_k - \boldsymbol{m}) (\boldsymbol{\mathbf{m}}_k - \boldsymbol{m})^T \quad \boldsymbol{S}_w = \sum_{k=1}^{K} \sum_{n \in C_k} (\boldsymbol{\mathbf{x}}_n - \boldsymbol{m}_k) (\boldsymbol{\mathbf{x}}_n - \boldsymbol{m}_k)^T$

- Generalized Eigenvalue problem
- * Eigenvectors of $S_w^{-1}S_b$

PRML - C. Bishop (Sec. 4.1.4, Sec. 4.1.6)

Linear Discriminant Analysis

PRML - C. Bishop (Sec. 4.1.4, Sec. 4.1.6)

PCA versus LDA

PRML - C. Bishop (Sec. 4.1.4, Sec. 4.1.6)

PCA versus LDA

