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Supervised-Dimensionality-Reduction.
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Probability Distributions

Established



Advantages and Disadvantages of PCA

“ Simple linear transform

* Eigen decomposition of Data Covariance matrix is
straight forward.

# PCA for high dimensional data ?

* Variance maximization may not be the ideal loss
function in dimensionality reduction.

+ If the data contains discrete class labels, we can do better
than PCA to maximize class separation.



Need for Supervised Dimensionality Reduction

Labelled _ PCA projection:
Maximising the variance of
data
the whole set
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Linear Discriminant Analysis



Without the Within Class Factor
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Linear Discriminant Analysis

Find a linear transform f(x) = w’ x with a criterion which

maximizes the class separation

- Maximize the between class distance in the projected space
while minimizing the within class covariance
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“ (Generalized Eigenvalue problem
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Eigenvectors ot S,," Sy, PRML - C. Bishop (Sec. 4.1.4, Sec. 4.1.6)



Linear Discriminant Analysis

Projecting on line joining means
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Fisher Discriminant
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PRML - C. Bishop (Sec. 4.1.4, Sec. 4.1.6)



PCAversusLDA
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PRML - C. Bishop (Sec. 4.1.4, Sec. 4.1.6)



PCA versus LDA

Labelled
data

PCA projection:
Maximising the variance of
the whole set

LDA projection:
Maximising the distance
between groups




