E9 205 Machine Learning for Signal Processing

Introduction to Machine Learning of Sensory Signals

19-08-2019

Instructor - Sriram Ganapathy (sriramg@iisc.ac.in)

Teaching Assistant - Prachi Singh (prachisingh@iisc.ac.in)

http://leap.ee.iisc.ac.in/sriram/teaching/MLSP_19/

Feature Extraction

Scope for this course

I. Feature Extraction in Text.

II. Feature Extraction in Speech and Audio signals. III. Processing of Images.

Speech and Audio Processing

Summary of STFT Properties

 $X[k, n_0]$

http://en.wikipedia.org/wiki/Window_function

Narrowband versus Wideband

- * Short windows poor frequency resolution wideband spectrogram
- * Long windows poor time resolution narrowband spectrogram

Spectrogram of Real Sounds

Narrowband versus Wideband

Dan Ellis, "STFT Tutorial"

MFCC

- MFCC coefficients model the spectral energy Distribution in a perceptually meaningful way
- Why do we need?
 - Automatic speech recogonition
 - Speaker Identification
 - Audio classification

Implementation steps

Time

Image Processing

Image Capture and Representation

Image Capture and Representation

Histogram

- Histogram captures the distribution of gray levels in the image.
- · How frequently each gray level occurs in the image

Image Filtering

 Image filtering: compute function of local neighborhood at each position

Really important!

- Enhance images
- Denoise, resize, increase contrast, etc.
- Extract information from images
- Texture, edges, distinctive points, etc.
- Detect patterns
- Template matching

Image Filtering

Given function

Gradient vector

$$\nabla f(x, y) = \begin{bmatrix} \frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$
$$|\nabla f(x, y)| = \sqrt{f_x^2 + f_y^2}$$
$$\theta = \tan^{-1} \frac{f_x}{f_y}$$

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x)$$
$$\frac{df}{dx} = \frac{f(x) - f(x - 1)}{1} = f'(x)$$
$$\frac{df}{dx} = f(x) - f(x - 1) = f'(x)$$

Gradient direction

Gradient magnitude

Edge Detection Example

Convolution Operation in Images

Matrix Derivatives (Appendix C, PRML, Bishop)

Dimensionality Reduction - PCA (Chapter 12.1, PRML, Bishop)

Principal Component Analysis

- * Reducing the data \mathbf{x}_n of dimension D to lower dimension M < D
- Projecting the data into subspace which preserves maximum data variance
 - * Maximize variance in projected space
- * Equivalent formulated as minimizing the error between the original and projected data points.