E9 205 Machine Learning for Signal Procesing

Deep Learning for Audio and Vision

20-11-2019

Speech Recognition

Signal Modeling

 Short-term spectra integrated in mel frequency bands followed by log compression + DCT – mel frequency cepstral coefficients (MFCC) [Davis and Mermelstein, 1979].

Mel Frequency Cepstral Coefficients

 MFCC processing repeated for every short-term frame yielding a sequence of features. Typically 25ms frames with 10ms hop in time.

Speech Recognition

• Map the features to phone class. Using phone labelled data.

 Classical machine learning - train a classifier on speech training data that maps to the target phoneme class.

Back to Speech Recognition

Back to Speech Recognition

Mapping Speech Features to Phonemes to words

State of Progress

Claims of human parity using BLSTM based Models !!!

Moving to End-to-End

Audio Features

Image Processing

Visual Graphics Group Network

ImageNet Task

1000 images in each of 1000 categories. In all, there are roughly 1.2 million training images, 50,000 validation images, and 150,000 testing images. ImageNet consists of variable-resolution images. Therefore, the images have been down-sampled to a fixed resolution of 224×224.

Method	top-1 val. error (%)	top-5 val. error (%)	top-5 test error (%)
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)		7.9	
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6.7	
MSRA (He et al., 2014) (11 nets)	-	-	8.1
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1
Clarifai (Russakovsky et al., 2014) (multiple nets)	-	-	11.7
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	-
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)	38.1	16.4	16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	

Can we go deeper

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun Microsoft Research {kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Residual Blocks

Figure 2. Residual learning: a building block.

Deep Networks with Residual Blocks

Deep Networks with Residual Blocks

Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

Results with ResNet

	plain	ResNet
18 layers	27.94	27.88
34 layers	28.54	25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation. Here the ResNets have no extra parameter compared to their plain counterparts. Fig. 4 shows the training procedures.

1001101010		
ResNet-50	22.85	6.71
ResNet-101	21.75	6.05
ResNet-152	21.43	5.71

Image Segmentation

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Vijay Badrinarayanan, Alex Kendall[®], and Roberto Cipolla, *Senior Member, IEEE*

The Problem of Segmentation

SegNet Architecture

Results from Segnet

Test samples

Ground Truth

SegNet

U-Net: Convolutional Networks for Biomedical Image Segmentation

U-net

Summary of the Course

Distribution Pie Chart

Generative Modeling and Dimensionality Reduction

Discriminative Modeling

When we started ...

Dates of Various Rituals

- S Assignments spread over 3 months (roughly one assignment every two weeks).
- September 1st week project topic announcements.
- September 3rd week 1st Midterm
- September 4th week project topic and team finalization and proposal submission. [1 and 2 person teams].
- * October 1st week Project Proposal
- October 3rd week 2nd MidTerm
- November 1st week Project MidTerm Presentations.
- December 1st week Final Exams
- December 2nd week Project Final Presentations.

Content Delivery

Theory and Mathematical Foundation

Integition and Lasanalysis

and Understanding

