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Other Architectures - Convolution Operation
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Max Pooling Operation
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Convolution Operation (Images)
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Result of Convolution

Tensorflow Tutorial




Convolutional Neural Networks
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» Multiple levels of filtering and subsampling operations.

» Feature maps are generated at every layer.



Representation Learning in GNNs

8 1t's deep if it has more than one stage of non-linear feature
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Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 201 3]



CNNs for Speech and Audio
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Convolutional Neural Networks on Images
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Image processing - Classification, segmentation, captioning, biomedical
Image processing applications.



